
Unit Testing with JUnit
and other random notes

Posted 2015-07-13

Not required for HW, just
useful if you want to master java

Adapted from slides by Hye In Kim 2013

Contents

• Junit

• Generics

• Inheritance

• Comparators

• Iterators

• Commenting

2

Unit Testing with JUnit

Unit Testing

• Looking for errors in a subsystem in isolation
• Test one behavior at a time per test method

– 10 small tests are much better than 1 test 10x as large

• Each test method should have few (likely 1) assert
statements
– If you assert many things, the first that fails halts the test
– You won't know whether a later assertion would have failed as

well

• Tests should minimize logic - Bug in test code is hard to
debug!
– minimize use of if/else, loops, switch, etc.

• Torture tests are okay, but only in addition to simple tests

4

Junit and Eclipse

• To add JUnit to an Eclipse project, click:
– Project → Properties → Build Path → Libraries →

Add Library... → Junit → JUnit 4 → Finish

• To create a test case:
– right-click a file and

choose:
New → Test Case

– Or click:
File → New →
JUnit Test

– Eclipse can create
method stubs

5

A JUnit Test Class

import org.junit.*;
import static org.junit.Assert.*;

public class TestClassName {
...
@Test
public void testName() { // a test case method

...
}

}

• A method with @Test is flagged as a JUnit test case
• All @Test methods run when JUnit runs your test class

6

JUnit Assertion Methods

Assertion Description

assertTrue(test) fails if the boolean test is false

assertFalse(test) fails if the boolean test is true

assertEquals(expected, actual) fails if the values are not equal

assertSame(expected, actual) fails if the values are not the same (by ==)

assertNotSame(expected, actual) fails if the values are the same (by ==)

assertNull(value) fails if the given value is not null

assertNotNull(value) fails if the given value is null

fail() causes current test to immediately fail

• Each method can also be passed a string to
display if it fails

– assertEquals(“message”, expected, actual)
7

Good Testing Practices
public class DateTest {

// Give test case methods really long descriptive names
@Test
public void test_addDays_withinSameMonth() { ... }

@Test
public void test_addDays_wrapToNextMonth() { ... }

// Expected value should be at LEFT
// Give messages explaining what is being checked
@Test
public void test_add_14_days() {

Date d = new Date(2050, 2, 15);
d.addDays(14);
assertEquals("year after +14 days", 2050, d.getYear());
assertEquals("month after +14 days", 3, d.getMonth());
assertEquals("day after +14 days", 1, d.getDay());

}
}

8

Good Assertion Messages

public class DateTest {
@Test
public void test_addDays_addJustOneDay_1() {

Date actual = new Date(2050, 2, 15);
actual.addDays(1);
Date expected = new Date(2050, 2, 16);
assertEquals("adding one day to 2050/2/15",

expected, actual);
}
...

}

• JUnit will already show the expected and actual values
• Not needed in your assertion messages

9

Tests With a Timeout

• This test will fail if it doesn’t finish running
within 5000 ms
@Test(timeout = 5000)
public void name() { ... }

Private static final int TIMEOUT = 2000;
...
@Test(timeout = TIMEOUT)
public void name() { ... }

• Times out / fails after 2000 ms

10

Testing for Exceptions

• Will pass if it does throw the given exception

– If the exception is not thrown, the test fails

– Use this to test for expected errors

@Test(expected = ExceptionType.class)
public void name() {

...
}

@Test(expected = IndexOutOfBoundsException.class)
public void testBadIndex() {

ArrayIntList list = new ArrayIntList();
list.get(4); // should throw exception

}

11

Setup and Teardown

• Create methods that run before or after
each test case method is called
@Before
public void name() { ... }
@After
public void name() { ... }

@BeforeClass
public static void name() { ... }
@AfterClass
public static void name() { ... }

• Create methods to run once before or after
the entire test class runs

12

Test Case “Smells"

• Tests should be self‐contained and not depend on
each other

• "Smells" (bad things to avoid) in tests:
– Constrained test order: Test A must run before Test B

(usually a misguided attempt to test order/flow)

– Tests that call each other: Test A calls Test B
(calling a shared helper is OK, though)

– Mutable shared state: Tests A and B both use a shared
object
(If A breaks it, what happens to B?)

13

Running a Test

• Right click the test class in the Eclipse Package
Explorer and choose: Run As → JUnit Test

• The JUnit bar will show green if all tests pass,
red if any fail

• The Failure Trace shows which tests failed, if
any, and why

14

Generics

Generic Arrays

• Field & variable can have generic array type

E[] elemArray;

• Cannot create new generic array
– Arrays need to “know their element type”
– Type “E” is unknown type

E[] myArray = new E[INITIAL_SIZE]; //Error

• Workaround
– Unavoidable warning, OK to suppress

@SuppressWarnings(“unchecked”)
E[] myArray = (E[]) new
Object[INITIAL_SIZE]; //OK

16

Array of Parameterized Type

• Cannot create array of parameterized type
DataCount <E>[] dCount =

new DataCount<E>[SIZE]; // Error

DataCount <E>[] dCount =
(DataCount<E>[]) new Object[SIZE]; // Error

DataCount<E>[] dCount =
(DataCount<E>[]) new DataCount[SIZE]; // OK

• Object[] does not work ‐ ClassCastException
– Arrays need to “know their element type”

– Object not guaranteed to be DataCount

• Specify it will always hold “DataCount”

17

Generics & Inner Classes
• Do not re‐define the type parameter

– Works, but not what you want!!

– Analogous of a local variable shadowing a field of the
same name

class OuterClass<E> {
class InnerClass<E> {}

} // No 

class OuterClass<E> {
class InnerClass {}

} // Yes 

class SomeClass {
int myInt;
void someMethod() {

int myInt= 3;
myInt++;

}
} // Not class field

class OuterClass<E> {
E myField;
class InnerClass<E> {

...
E data = myField;

}
} // Not the same type

18

Generic Methods

• A method can be generic when the class is not

– Define the type variable at the method

• More generics
http://docs.oracle.com/javase/tutorial/java/generics/index.html

public static <E> void insertionSort
(E[] array, Comparator<E> comparator);

19

http://docs.oracle.com/javase/tutorial/java/generics/index.html

Generic Wildcards

• Used to denote super/subtype of type parameter

• Upper bounded wildcard: <? extends E>

– E and every subtype (subclass) of E

• Lower bounded wildcard: <? super E>

– E and every supertype (superclass) of E

• Consider <? extends E> for parameters and
<? super E> for return types

– The only use in Project 2 is with the comparator

20

Inheritance

Interface & Inheritance

• Interface provides list of methods a class
promises to implement
– Inheritance: is‐a relationship and code sharing

– Interfaces: is‐a relationship without code sharing

• Inheritance provides code reuse Style Points!!
– Take advantage of inherited methods

– Do not reimplement already provided
functionality

– Override only when it is necessary

22

Comparators

Comparing Objects

• Less-than (<) and greater-than (>) operators
do not work with objects in Java

• Two ways of comparing:

1. Implement Comparable interface

• Natural ordering: 1, 2, 3, 4 ...

• One way of ordering

2. Use Comparator <- Project 2

• Many ways of ordering

24

Comparable Interface

• A call of A.compareTo(B) should return:

– a value < 0 if A comes “before” B in the ordering

– a value > 0 if A comes “after” B in the ordering

– or exactly 0 if A and B are considered “equal” in
the ordering

public interface Comparable<T> {
public int compareTo(T other);

}

25

What's the "natural" order?

• What is the "natural ordering" of rectangles?

– By x, breaking ties by y?

– By width, breaking ties by height?

– By area? By perimeter?

• Do rectangles have any "natural" ordering?

– Might we ever want to sort rectangles a second
way?

26

Comparator Interface

• Interface Comparator:

– External object specifies comparison function

– Can define multiple orderings

public interface Comparator<T> {
public int compare(T first, T second);

}

27

Comparator Examples
public class RectangleAreaComparator

implements Comparator<Rectangle>{
// compare in ascending order by area (WxH)
public int compare(Rectangle r1, Rectangle r2) {

return r1.getArea() - r2.getArea();
}

}
public class RectangleXYComparator

implements Comparator<Rectangle>{
// compare by ascending x, break ties by y
public int compare(Rectangle r1, Rectangle r2) {

if (r1.getX() != r2.getX()) {
return r1.getX() - r2.getX();

} else {
return r1.getY() - r2.getY();

}
}

} 28

Using Comparators

• TreeSet and TreeMap can accept a Comparator parameter

• Searching and sorting methods can accept comparators.

• Methods are provided to reverse a comparator's ordering:

Comparator<Rectangle> comp = new RectangleAreaComparator();
Set<Rectangle> set = new TreeSet<Rectangle>(comp);

Arrays.binarySearch(array, value, comparator)
Arrays.sort(array, comparator)
Collections.binarySearch(list, comparator)
Collections.max(collection, comparator)
Collections.min(collection, comparator)
Collections.sort(list, comparator)

Collections.reverseOrder()
Collections.reverseOrder(comparator)

29

Iterators

Iterator
• Object that allows traverse elements of collection

– Anonymous Class: Combined class declaration and
instantiation.

public SimpleIterator<DataCount<E>> getIterator() {
return new SimpleIterator <DataCount<E>>() {

// Returns true if there are more elements to examine
public boolean hasNext() {

...
}
// Returns the next element from the collection
public DataCount<E> next() {

if(!hasNext()) {
throw new NoSuchElementException();

}
...

}
}; //  Notice the semicolon here!

} 31

Commenting

Commenting - Preconditions

• Precondition: Something assumed to be true
at the start of a method call.

// Returns the element at the given index.
// Precondition: 0 <= index < size
public int get(int index) {

return elementData[index];
}

Index 0 1 2 3 4 5 6 7 8 9

Value 3 8 9 7 5 12 0 0 0 0

Size 6

• Stating a precondition doesn't "solve" the problem of
users passing improper indexes, but it at least documents
our decision and warns the client what not to do

33

Commenting - Postconditions

• Postcondition: Something your method
promises will be true at the end of its execution, if all
preconditions were true at the start

• If your method states a postcondition, clients should be
able to rely on that statement being true after they call the
method

// Makes sure that this list's internal array is large
// enough to store the given number of elements.
// Precondition: capacity >= 0
// Postcondition: elementData.length >= capacity
public void ensureCapacity(int capacity) {

while (capacity > elementData.length) {
elementData = Arrays.copyOf(elementData,

2 * elementData.length);
}

}

34

Javadoc Comments

• Put on all class headers, public methods and
constructors

• Eclipse and other editors have useful built‐in
Javadoc support

/**
* Description of class/method/field/etc.
*
* @tag attributes
* @tag attributes
* ...
* @tag attributes
*/

35

Javadoc Tags

Tag Description

@param name description describes a parameter

@return description describes what value will be returned

@throws ExceptionType reason describes an exception that may be thrown
and what would cause it

Tag Description

@author name author of a class

@version number class version number in any format

On a method or constructor

On a class header

36

Javadoc Example
/**
* Each BankAccount object models the account information
* for a single user of Fells Wargo bank.
* @author James T. Kirk
* @version 1.4 (Aug 9 2008)
*/
public class BankAccount {

/** The standard interest rate on all accounts. */
public static final double INTEREST_RATE = 0.03;
...
/**
* Deducts the given amount of money from this account's
* balance, if possible, and returns whether the money was
* deducted successfully (true if so, false if not).
* If the account does not contain sufficient funds to
* make this withdrawal, no funds are withdrawn.
*
* @param amount the amount of money to be withdrawn
* @return true if amount was withdrawn, else false
* @throws IllegalArgumentException if amount is negative
*/
public boolean withdraw(double amount) {...}

}
37

Javadoc Output as HTML

• Java includes tools to convert Javadoc
comments into web pages

– In terminal: javadoc –d doc/ *.java

– In Eclipse: Project → Generate Javadoc…

• The Java API webpages are generated from
Sun’s Javadoc comments on the actual source
code.

38

Comments - Clear and Helpful
/** Takes an index and element and adds the element there.
* @param index index to use
* @param element element to add
*/
public boolean add(int index, E element) { ...

/** Inserts the specified element at the specified position in
* this list. Shifts the element currently at that position (if
* any) and any subsequent elements to the right (adds one to
* their indices). Returns whether the add was successful.
* @param index index at which the element is to be inserted
* @param element element to be inserted at the given index
* @return true if added successfully; false if not
* @throwsIndexOutOfBoundsExceptionif index out of range
* ({@code index < 0 || index > size()})
*/
publicbooleanadd(intindex, E element) { ...

Instead…

39

Javadoc and private

• Private internal methods do not need Javadoc
comments

• Private members do not appear in the generated HTML
pages

/** ... a Javadoc comment ... */
public void remove(int index) { ... }
// Helper does the real work of removing
// the item at the given index.
private void removeHelper(int index) {

for (int i = index; i < size - 1; i++) {
elementData[i] = elementData[i + 1];

}
elementData[size - 1] = 0;
size--;

}
40

Custom Javadoc Tags

• Javadoc doesn't have tags for pre/post, but
you can add them
– By default, these tags wont appear in the

generated HTML but…

Tag Description

@pre condition
(or @precondition)

Notes a precondition in the API documentation;
describes a condition that must be true for the
method to perform it’s functionality

@post condition
(or @postcondition)

Notes a postcondition in API documentation;
describes a condition that is guaranteed to be true at
the end of the method’s functionality, so long as all
preconditions were true at the start of the method.

41

Apply Custom Javadoc Tags

• In terminal:
javadoc -d doc/
-tag pre:cm:"Precondition:"
-tag post:cm:"Postcondition:" *.java

• In Eclipse:
Project → Generate Javadoc... → Next → Next →
in the "Extra Javadoc options“ box,
-tag pre:cm:"Precondition:" –tag post:cm:"Postcondition:"

• The generated webpages will now display pre
and post tags properly!

42

