CSE 332: Data Abstractions

Section 1: Recurrences, Amortized Analysis

0. Summations

For each of the following, find a closed form.
(a) $\sum_{i=0}^{n} i^{2}$
(b) $\sum_{i=0}^{\infty} x^{i}$

1. Recurrences and Closed Forms

For each of the following code snippets, find a recurrence for the worst case runtime of the function, and then find a closed form for the recurrence.
(a) Consider the function f :

```
f(n) {
    if (n == 0) {
        return 1;
    }
    return 2 * f(n - 1) + 1;
}
```

- Find a recurrence for $f(n)$.
- Find a closed form for $f(n)$.
(b) Consider the function g :

```
g(n) {
    if (n == 1) {
        return 1000;
    }
    if (g(n/3) > 5) {
        return 5 * g(n/3);
    }
    else {
        return 4 * g(n/3);
    }
}
```

- Find a recurrence for $g(n)$.
- Find a closed form for $g(n)$.

2. Big-Oh Bounds for Recurrences

For each of the following, find a Big-Oh bound for the provided recurrence.
(a) $T(n)= \begin{cases}1 & \text { if } n=1 \\ 8 T(n / 2)+4 n^{2} & \text { otherwise }\end{cases}$
(c) $T(n)= \begin{cases}1 & \text { if } n=0 \\ T(n-1)+3 & \text { otherwise }\end{cases}$
(d) $T(n)= \begin{cases}1 & \text { if } n=1 \\ T(n / 2)+3 & \text { otherwise }\end{cases}$
(b) $T(n)= \begin{cases}1 & \text { if } n=1 \\ 7 T(n / 2)+18 n^{2} & \text { otherwise }\end{cases}$
(e) $T(n)= \begin{cases}1 & \text { if } n=0 \\ T(n-1)+T(n-2)+3 & \text { otherwise }\end{cases}$

3. Hello, elloH, lleoH, etc.

Consider the following code:

```
p(L) {
    if (L == null) {
        return [[]];
    }
    List ret = [];
    int first = L.data;
    Node rest = L.next;
    for (List part : p(rest)) {
        for (int i = 0; i <= part.size()) {
            part = copy(part);
            part.add(i, first);
            ret.add(part);
        }
    }
    return ret;
}
```

(a) Find a recurrence for the output complexity of $p(L)$. That is, if $|L|=n$, what is the size of the output list, in terms of n ? Then, find a Big-Oh bound for your recurrence.
(b) Now, find a recurrence for the time complexity of $p(L)$, and a Big-Oh bound for this recurrence as well.

4. MULTI-pop

Consider augmenting a standard Stack with an extra operation:
multipop (k): Pops up to k elements from the Stack and returns the number of elements it popped
What is the amortized cost of a series of multipop's on a Stack assuming push and pop are both $\mathcal{O}(1)$?

