CSE 332: Data Abstractions

Section 1: Recurrences, Amortized Analysis Solutions

0. Summations

For each of the following, find a closed form.
(a) $\sum_{i=0}^{n} i^{2}$

Solution:

Since we're summing up powers of two, let's guess that it's $\mathcal{O}\left(n^{3}\right)$. If it is, then we know it's of the form:

$$
a n^{3}+b n^{2}+c n+d
$$

Let's look at small examples:

- $n=0 \rightarrow 0$
- $n=1 \rightarrow 1$
- $n=2 \rightarrow 5$
- $n=3 \rightarrow 14$
- $n=4 \rightarrow 30$

Plugging these answers in, we get the following equations:

- $d=0$
- $a+b+c=1$
- $8 a+4 b+2 c=5$
- $27 a+9 b+4 c=14$

Solving these equations gives us: $d=0, c=\frac{1}{6}, b=\frac{1}{2}, a=\frac{1}{3}$
So, the summation is $\frac{n^{3}}{6}+\frac{n^{2}}{2}+\frac{n}{3}$.
(b) $\sum_{i=0}^{\infty} x^{i}$

Solution:

Define $S=\sum_{i=0}^{\infty} x^{i}$ and consider

$$
x S=x \sum_{i=0}^{\infty} x^{i}=\sum_{i=0}^{\infty} x^{i+1}=\sum_{i=1}^{\infty} x^{i}=S-1
$$

So, since $x S=S-1$; solving for S gives us $S=\frac{1}{1-x}$.

1. Recurrences and Closed Forms

For each of the following code snippets, find a recurrence for the worst case runtime of the function, and then find a closed form for the recurrence.
(a) Consider the function f :
$f(n)$ \{
if ($\mathrm{n}==0$) \{
return 1;
\}
return 2 * $\mathrm{f}(\mathrm{n}-1)+1$;
\}

- Find a recurrence for $f(n)$.

Solution:

$$
T(n)= \begin{cases}c_{0} & \text { if } n=0 \\ T(n-1)+c_{1} & \text { otherwise }\end{cases}
$$

- Find a closed form for $f(n)$.

Solution:

Unrolling the recurrence, we get $T(n)=\underbrace{c_{1}+c_{1}+\cdots+c_{1}}_{n \text { times }}+c_{0}=c_{1} n+c_{0}$.
(b) Consider the function g :

```
g(n) {
    if (n == 1) {
        return 1000;
    }
    if (g(n/3) > 5) {
        return 5 * g(n/3);
    }
    else {
        return 4 * g(n/3);
    }
}
- Find a recurrence for \(g(n)\).
```

Solution:

$$
T(n)= \begin{cases}c_{0} & \text { if } n=1 \\ 2 T(n / 3)+c_{1} & \text { otherwise }\end{cases}
$$

- Find a closed form for $g(n)$.

Solution:

The recursion tree has height $\log _{3}(n)$. Level i has work $\left(\frac{c_{1} 2^{i}}{3^{i}}\right)$. So, putting it together, we have:

$$
\begin{aligned}
\sum_{i=0}^{\log _{3}(n)-1}\left(\frac{c_{1} 2^{i}}{3^{i}}\right)+2^{\log _{3}(n)} c_{0}=c_{1} \sum_{i=0}^{\log _{3}(n)-1}\left(\frac{2}{3}\right)^{i}+n^{\log _{3}(2)} c_{0} & =\frac{1-\left(\frac{2}{3}\right)^{\log _{3}(n)}}{1-\frac{2}{3}}+n^{\log _{3}(2)} c_{0} \\
& =3-\left(\frac{2}{3}\right)^{\log _{3}(n)}+n^{\log _{3}(2)} c_{0}
\end{aligned}
$$

2. Big-Oh Bounds for Recurrences

For each of the following, find a Big-Oh bound for the provided recurrence.
(a) $T(n)= \begin{cases}1 & \text { if } n=1 \\ 8 T(n / 2)+4 n^{2} & \text { otherwise }\end{cases}$
(c) $T(n)= \begin{cases}1 & \text { if } n=0 \\ T(n-1)+3 & \text { otherwise }\end{cases}$

3. Hello, elloH, lleoH, etc.

Consider the following code:

```
p(L) {
    if (L == null) {
        return [[]];
    }
    List ret = [];
    int first = L.data;
    Node rest = L.next;
    for (List part : p(rest)) {
        for (int i = 0; i <= part.size()) {
            part = copy(part);
            part.add(i, first);
            ret.add(part);
        }
```


Solution:

Note that $a=8, b=2$, and $c=2$. Since $\log _{2}(8)=3>2$, we have $T(n) \in \Theta\left(n^{\log _{2}(8)}\right)=$ $\Theta\left(n^{3}\right)$ by Master Theorem.
(b) $T(n)= \begin{cases}1 & \text { if } n=1 \\ 7 T(n / 2)+18 n^{2} & \text { otherwise }\end{cases}$

Solution:

Note that $a=7, b=2$, and $c=2$. Since $\log _{2}(7)=3>2$, we have $T(n) \in \Theta\left(n^{\log _{2}(7)}\right)$ by Master Theorem.
(d) $T(n)= \begin{cases}1 & \text { if } n=1 \\ T(n / 2)+3 & \text { otherwise }\end{cases}$

Solution:
 Solution.

Note that $a=1, b=2$, and $c=0$. Since $\log _{2}(1)=0=2$, we have $T(n) \in \Theta(\lg (n))$ by Master Theorem.
(e) $T(n)= \begin{cases}1 & \text { if } n=0 \\ T(n-1)+T(n-2)+3 & \text { otherwise }\end{cases}$

Solution:

Note that this recurrence is bounded above by $T(n)=2 T(n-1)+3$. If we unroll that recurrence, we get $3+2(3+2(3+\cdots+2(1)))$.
This is approximately $\sum_{i=0}^{n} 3 \times 2^{i}=3\left(2^{n+1}-1\right)=$ $\mathcal{O}\left(2^{n}\right)$. We can actually find a better bound (e.g., it's not the case that $T(n) \in \Omega\left(2^{n}\right)$.

Solution:

There are n terms to unroll and each one is constant. This is $\Theta(n)$.
)
return ret;
3 \}
(a) Find a recurrence for the output complexity of $p(L)$. That is, if $|L|=n$, what is the size of the output list, in terms of n ? Then, find a Big-Oh bound for your recurrence.

Solution:

The base case returns a list of length one. The recursive case adds one list in each iteration of the for loop for each list returned. So, the recurrence is $\operatorname{Out}(n)= \begin{cases}1 & \text { if } n=0 \\ n \operatorname{Out}(n-1) & \text { otherwise }\end{cases}$ So, $\operatorname{Out}(n) \in \mathcal{O}(n!)$
(b) Now, find a recurrence for the time complexity of $p(L)$, and a Big-Oh bound for this recurrence as well.

Solution:

$T(n)= \begin{cases}1 & \text { if } n=0 \\ T(n-1)+\operatorname{Out}(n-1) n & \text { otherwise }\end{cases}$
Unrolling, we get $T(n)=n!+(n-1)!+(n-2)!+\cdots+0!+1 \leq n(n!) \leq(n+1)!\in \mathcal{O}((n+1)!)$

4. MULTI-pop

Consider augmenting a standard Stack with an extra operation: multipop (k): Pops up to k elements from the Stack and returns the number of elements it popped What is the amortized cost of a series of multipop's on a Stack assuming push and pop are both $\mathcal{O}(1)$?

Solution:

Consider an empty Stack. If we run various operations (multipop, pop, and push) on the Stack until it is once again empty, we see the following:

- In general, multipop(k) takes time proportional to k.
- If over the course of running the operations, we push n items, then each item is associated with at most one multipop or pop.
- It follows that the largest number of time the multipops can take in aggregate is n.
- Note that the smallest possible number of operationsis $n+1$ (n pushes and 1 multipop).

So, the amortized analysis for this series of operations is at most $\frac{2 n}{n+1}=\mathcal{O}(1)$.

