CSE 332: Data Abstractions

Section 1: Asymptotics Solutions

0. Big-Oh Proofs

For each of the following, prove that $f \in \mathcal{O}(q)$.

$$f(n) = 7n g(n) = \frac{n}{10}$$

Solution: Choose c=70, $n_0=1$. Then, note that $7n=\frac{70n}{10}\leq 70\left(\frac{n}{10}\right)$ for all $n\geq 1$. So, $f(n)\in \mathcal{O}(g(n))$.

(b)
$$f(n) = 1000$$
 $g(n) = 3n^3$

Solution: Choose c=3, $n_0=1000$. Then, note that $1000 \le n \le n^3 \le 3n^3$ for all $n \ge 1000$. So, $f(n) \in \mathcal{O}(g(n))$.

(c)
$$f(n) = 7n^2 + 3n$$
 $g(n) = n^4$

Solution: Choose c=14, $n_0=1$. Then, note that $7n^2+3n \leq 7(n^4+n^4) \leq 14n^4$ for all $n\geq 1$. So, $f(n)\in \mathcal{O}(g(n))$.

(d)
$$f(n) = n + 2n \lg n \qquad g(n) = n \lg n$$

Solution: Choose c=3, $n_0=1$. Then, note that $n+2n\lg n \le n\lg n+2n\lg n=3n\lg n$ for all $n\ge 1$. So, $f(n)\in \mathcal{O}(g(n))$.

1. Asymptotics Disproof

Prove that $n^2 \not\in \mathcal{O}(n)$.

Solution:

Assume for the sake of contradiction that $n^2 \in \mathcal{O}(n)$. Then, there exist $c, n_0 > 0$ such that $n^2 \leq cn$ for all $n \geq n_0$. If $n^2 \leq cn$, then $n \leq c$. Consider $n_1 = \max(n_0, c+1)$. Since $n_1 \geq n_0$, we know $n_1 \leq c$, but $c+1 \not\leq c$ for any c. This is a contradiction! So, $n^2 \notin \mathcal{O}(n)$.

2. Is Your Program Running? Better Catch It!

For each of the following, determine the asymptotic worst-case runtime in terms of n.

(a)
1 int x = 0;
2 for (int i = n; i >= 0; i--) {
3 if ((i % 3) == 0) {
4 break;
5 }
6 else {
7 x += n;
8 }
9 }

Solution: This is $\Theta(1)$, because n, n-1, or n-2 will be divisible by three. So, the loop runs at most 3 times.

Solution:

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n^2/3-1} 1 = \sum_{i=0}^{n} \frac{n^2}{3} = n\left(\frac{n^2}{3}\right) = \Theta(n^3)$$

Solution:

$$\sum_{i=0}^{n} \sum_{j=0}^{i^2 - 1} 1 = \sum_{i=0}^{n} i^2 - 1 = \left(\frac{n(n+1)(2n+1)}{6} - n \right) = \Theta(n^3)$$

3. Induction Shminduction

Prove
$$\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$$
 by induction on n .

Solution:

Let P(n) be the statement " $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$ " for all $n \in \mathbb{N}$. We prove P(n) by induction on n.

Base Case. Note that $\sum_{i=0}^{0} 2^i = 0 = 2^0 - 1$. So, P(0) is true.

Induction Hypothesis. Suppose P(k) is true for some $k \in \mathbb{N}$.

Induction Step. Note that

$$\begin{split} \sum_{i=0}^{k+1} 2^i &= \sum_{i=0}^k 2^i + 2^{k+1} \\ &= 2^{k+1} - 1 + 2^{k+1} \\ &= 2^{k+2} - 1 \end{split} \tag{By IH}$$

Note that this is exactly P(k+1).

So, the claim is true by induction on n.

4. The Implications of Asymptotics

For each of the following, determine if the statement is true or false.

(a)
$$f(n) \in \Theta((g(n)) \to f(n) \in \mathcal{O}(g(n))$$

Solution:

This is true. By definition of $f(n) \in \Theta((g(n)))$, we have $f(n) \in \mathcal{O}(g(n))$.

(b)
$$f(n) \in \Theta(g(n)) \to g(n) \in \Theta(f(n))$$

Solution:

This is true. By definition of $f(n) \in \Theta(g(n))$, we have $f(n) \in \mathcal{O}(g(n))$ and $f(n) \in \Omega(g(n))$. So, there exist $n_0, n_1, c_0, c_1 > 0$ such that $f(n) \le c_0 g(n)$ for all $n \ge n_0$ and $f(n) \ge c_1 g(n)$ for all $n \ge n_1$. Define $n_2 = \max(n_0, n_1)$ and note that both inequalities hold for all $n \ge n_2$. Then, dividing both sides by their constants, we have:

$$g(n) \ge \frac{f(n)}{c_0}$$

$$g(n) \le \frac{f(n)}{c_1}$$

So, we've found constants $\left(\frac{1}{c_0}, \frac{1}{c_1}\right)$ and a minimum n (n_2) that satisfy the definitions of Omega and Oh. It follows that $g(n)is\Theta(f(n))$.

(c)
$$f(n) \in \Omega((g(n) \to g(n) \in \mathcal{O}(f(n)))$$

Solution:

This is true. This is basically identical to the previous part (except we only have to do half the work).

3

5. Asymptotic Analysis

For each of the following, determine if $f \in \mathcal{O}(g)$, $f \in \Omega(g)$, $f \in \Theta(g)$, several of these, or none of these.

(a)
$$f(n) = \log n \qquad g(n) = \log \log n$$

Solution: $f(n) \in \Omega(g(n))$

(b)
$$f(n) = 2^n$$
 $g(n) = 3^n$

Solution: $f(n) \in \mathcal{O}(g(n))$

(c)
$$f(n) = 2^{2n}$$
 $g(n) = 2^n$

Solution: $f(n) \in \Omega(g(n))$