
Adam Blank Summer 2015Lecture 17/18

CSE332
Data Abstractions

CSE 332: Data Abstractions

Synchronization

Parallelism and Concurrency (Again) 1

We’re done talking about parallelism. Our goal is no longer (necessarily)
“to make the program faster”.

The ForkJoin Framework is great, but it doesn’t actually allow us to
share resources.

Two threads only interact at birth and death

For the next few lectures, we’ll investigate what happens when we lift
that restriction.

Two threads can run different algorithms now

Why Use Threads Then? 2

Code structure for responsiveness
Example: Respond to GUI events in one thread while another thread
is performing an expensive computation

Processor utilization (mask I/O latency)
If 1 thread goes to disk, have something else to do

Failure isolation
Convenient structure if want to interleave multiple tasks and do not
want an exception in one to stop the other



Very Complicated, Very Quickly. . . 3

Concurrent code gets very complicated very quickly. Why?

Concurrency introduces non-determinism!

In sequential programming, when you run the same program multiple
times, you get the same result (Random isn’t really random; it just uses a
seed).

This is no longer true for concurrent programs:

Thread 0
print("Hi I’m Thread 0");

Thread 1
print("Hi I’m Thread 1");

Thread 2
print("Hi I’m Thread 2");

Thread 3
print("Hi I’m Thread 3");

These threads could run in any order. . .

Investigating How Things Can Go Wrong 4

Concurrent code is only correct if all possible executions are correct.

Store

Store.cash = 1000;

Customer1.wallet = 100;

Customer 1
1 int store = Store.cash + 50;
2 Customer1.wallet −= 50;
3 Store.cash = store;

Customer2.wallet = 200;

Customer 2
1 int store = Store.cash + 20;
2 Customer2.wallet −= 20;
3 Store.cash = store;

What Happens With This Interleaving?
int store = Store.cash + 50;

int store = Store.cash + 20;

Customer2.wallet −= 20;

Customer1.wallet −= 50;

Store.cash = store;

This is called a race condition.

Data Races 5

Bad interleavings aren’t the only way concurrency can go
wrong. . . Consider the following concurrent program:

private int data = −1;
private int done = false;

Thread 1
1 data = 4000;
2 done = true;

Thread 2
1 while (!done) {
2 // wait for data...
3 }
4 System.out.println(data);

This code doesn’t have any bad interleavings, but. . .

The compiler is allowed to re-order lines 1 and 2 on the left.

To fix it, we insist that lines 1 and 2 happen together. We’ll see how to
do this later today.

Data Races 6

Definition (Data Race)
When two threads interact such that:

One of them writes to a variable x

And the other reads from or writes to the same variable x

Data Races can be a problem for two reasons:
1 They can lead to race conditions (we’ll talk about this case)
2 The compiler/CPU is allowed to re-order the reads/writes which

causes errors (we’ll ignore this)

Note that two reads from the same variable is not a data race.

To fix a data race, we insist that the relevant reads/writes are atomic
(must happen together).

For the remainder of the course, we will assume that the compiler does
not re-order lines, but you must avoid data races in practice.



Back To Race Conditions 7

Definition (Race Condition)
A race condition is a concurrency bug that causes the result of the
computation to depend on the interleaving of threads.
In other words, a program has a race condition if any interleaving of
instructions in threads results in an incorrect computation.

The result of the store example should be Store.cash = 170, but if we
look at the interleaving from before:

int store = Store.cash + 50;

int store = Store.cash + 20;

Customer2.wallet −= 20;

Customer1.wallet −= 50;

Store.cash = store;

Store.cash = store;

Store.cash will end up equaling 150. Are there any other interleavings
that lead to different results?
So, what’s the solution?

Atomicity 8

Store.cash changed between reading and writing!

We want only one thread to be able to be working with a value of
Store.cash at a time. (Or we might get a stale value like above)

When there is a section of code that must occur atomically to avoid
race conditions, we call this a critical section.

Store

Store.cash = 1000;

Customer1.wallet = 100;

Customer 1
atomic {

int store = Store.cash + 50;
Customer1.wallet −= 50;
Store.cash = store;

}

Customer2.wallet = 200;

Customer 2
atomic {

int store = Store.cash + 20;
Customer2.wallet −= 20;
Store.cash = store;

}

The idea of only allowing one thread in the critical section at a time is
called mutual exclusion.

How Do We Get Mutual Exclusion? 9

We need to make use of a language feature to do this. (If you take
CSE451, you will implement your own mutexes.)

Definition (Mutex (Lock))
A mutex is a way of marking a critical section. If one thread “has the
lock”, all other threads wait to get the lock before entering the critical
section.

We define Lock as an ADT:
Lock ADT

new() Creates a new lock which no thread holds
lock() If the lock is not held by any threads, then the calling thread

acquires it. Otherwise, the thread waits until the lock is free.
unlock() If the lock is held by this thread, the calling thread releases

it. Otherwise, calling this method is an error.

Solving the Store Problem? 10

Store

Store.cash = 1000;
Lock lock = new Lock();

Customer1.wallet = 100;

Customer 1
lock.lock();
int store = Store.cash + 50;
Customer1.wallet −= 50;
Store.cash = store;
lock.unlock();

Customer2.wallet = 200;

Customer 2
lock.lock();
int store = Store.cash + 20;
Customer2.wallet −= 20;
Store.cash = store;
lock.unlock();

Other Solutions? Some Questions. . .
Can we use different locks for different Customers?
No! If we do this, the customers will all be allowed in their critical
sections at the same time!
Can we use different locks for different Stores?
Yes! The race condition happens due to the Store.cash variable,
but each store would have its own.
What happens if we don’t release the lock? The customers that
haven’t gone yet never will. Uh oh!



Another Race Condition Example? 11

Sum Array
sum = 0;

Thread 1
for (int i = 0; i < MID; i++) {

sum += input[i];
}

Thread 2
for (int i = MID; i < NUM; i++) {

sum += input[i];
}

Does this example have a race condition? If so, fix it.It does! Notice that
both threads reading input is okay!

The problem is that they’re both writing to sum.

We could put a mutex around each for loop, but we can do better:

Sum Array
Lock lock = new Lock();
sum = 0;

Thread 1
for (int i = 0; i < MID; i++) {

lock.lock();
sum += input[i];
lock.unlock();

}

Thread 2
for (int i = MID; i < NUM; i++) {

lock.lock();
sum += input[i];
lock.unlock();

}

ANOTHER Example! 12

1 class Stack<E> {
2 Lock lock = new Lock();
3 void push(E val) {
4 lock.lock();
5 ...
6 lock.unlock();
7 }
8 E pop() {
9 lock.lock();

10 ...
11 lock.unlock();
12 }
13 E peek() {
14 E ans = pop();
15 push(ans);
16 return ans;
17 }
18 }

Stack s = new Stack();

Thread 1
???

Thread 2
???

This code has a race condition.
Can you find an interleaving of method calls that causes it?

ANOTHER Example! 13

E ans = s.pop();

s.push(5);

s.push(ans);

return ans;

s.pop();

In this interleaving, the top two elements end up in the wrong order!

Notice that with our definition of locks, we can’t just fix this problem by
putting lock around the contents of peek even though that seems like a
reasonable solution.

To fix this, we’d need to make private versions of push and pop that
don’t lock and use those.

A Note: Reentrant Locks
A reentrant lock is a mutex that can be taken multiple times by the
same thread.
A reentrant lock would also solve our problem.

And Again! 14

1 class Stack<E> {
2 Lock lock = new Lock();
3 void push(E val) {
4 lock.lock();
5 array[++index] = val;
6 lock.unlock();
7 }
8 E pop() {
9 lock.lock();

10 array[index−−] = val;
11 lock.unlock();
12 }
13 E peek() {
14 return array[index];
15 }
16 }

Do we need a lock around peek?

int newIndex = ++index;

return array[index];

array[newIndex] = val;



A Common Race Condition Pattern 15

We’ve seen a lot of race conditions that follow this pattern:
1 if (check()) {
2 doAction();
3 }

This is called a Time-Of-Check-To-Time-Of-Use (TOCTTOU) bug.

More Examples

1 if (validUser()) {
2 authenticateUser();
3 }

1 if (!file.exists()) {
2 file.create();
3 }

What is the race condition? Why do these violate their specifications?
if (check)

deauthenticate();

authenticateUser()

More Data Structures 16

Suppose we have a program that implements an LRU Cache (a store of≤ n items that evicts the oldest item when it has to remove something).

How To Implement?
1 HashTable table;
2 Queue queue;
3
4 insert(i) {
5 table.insert(i);
6 queue.enqueue(i);
7 }
8 remove() {
9 e = queue.dequeue();

10 table.remove(i);
11 }
12 contains(i) {
13 return table.contains(i);
14 }

We good?

Stupid Race Conditions. . .
1 HashTable table; Lock tLock;
2 Queue queue; Lock qLock;
3
4 insert(i) {
5 tLock.lock();
6 table.insert(i);
7 qLock.lock();
8 queue.enqueue(i);
9 qLock.unlock();

10 tLock.unlock();
11 }
12 remove() {
13 qLock.lock();
14 e = queue.dequeue();
15 tLock.lock();
16 table.remove(i);
17 tLock.unlock();
18 qLock.unlock();
19 }

Now?

No! Still Not Okay! 17

A Problem?
1 insert(i) {
2 tLock.lock();
3 table.insert(i);
4 qLock.lock();
5 queue.enqueue(i);
6 qLock.unlock();
7 tLock.unlock();
8 }
9 remove() {

10 qLock.lock();
11 e = queue.dequeue();
12 tLock.lock();
13 table.remove(i);
14 tLock.unlock();
15 qLock.unlock();
16 }

tLock.lock();

qLock.lock();

table.insert(i);

e = queue.dequeue();

qLock.lock();

tLock.lock();

queue.enqueue(i);

table.remove(i);

qLock.unlock();

tLock.unlock();

tLock.unlock();

qLock.unlock();

The insert is waiting on the queue lock and the remove is waiting on
the hashtable lock...

These stupid threads are waiting for each other!

This is called deadlock.

THE Example: Dining Philosophers 18

Five philosophers go out to eat at a Chinese restaurant. Unfortunately,
this restaurant has a shortage of chopsticks. So, they put one chopstick
between each place setting:

a

1

b
2c

3

d

4

e
5

Every philosopher first grabs the chopstick to her right, then the one to
her left. Deadlock.
The Fix
Impose a global ordering on the chopsticks:

Always grab the smaller number first



LRU Cache Fix 19

Broken
1 insert(i) {
2 tLock.lock();
3 table.insert(i);
4 qLock.lock();
5 queue.enqueue(i);
6 qLock.unlock();
7 tLock.unlock();
8 }
9 remove() {

10 qLock.lock();
11 e = queue.dequeue();
12 tLock.lock();
13 table.remove(i);
14 tLock.unlock();
15 qLock.unlock();
16 }

Fixed!
1 insert(i) {
2 tLock.lock();
3 table.insert(i);
4 qLock.lock();
5 queue.enqueue(i);
6 qLock.unlock();
7 tLock.unlock();
8 }
9 remove() {

10 tLock.lock();
11 qLock.lock();
12 e = queue.dequeue();
13 table.remove(i);
14 tLock.unlock();
15 qLock.unlock();
16 }

Always grab the table lock before getting the queue lock.

Another Banking Example! 20

1 class BankAccount {
2 Lock lock = new Lock();
3 void withdraw(int amt) {
4 this.lock.lock();
5 this._withdraw(amt);
6 this.lock.unlock();
7 }
8 void deposit(int amt) {
9 this.lock.lock();

10 this._deposit(amt);
11 this.lock.unlock();
12 }
13 void transfer(int amt, BankAccount

b) {
14 this.lock.lock();
15 this._withdraw(amt);
16 b.deposit(amt);
17 this.lock.unlock();
18 }
19 }

Assume that _withdraw and
_deposit are the unlocked versions.

Consider two simultaneous transfers:

a.transfer(100, b);
b.transfer(100, a);

Do you see any problems?

Another Banking Example 21

a.lock.lock();

b.lock.lock();

a._withdraw(amt);

b._withdraw(amt);

b.lock.lock();

a.lock.lock();

b._deposit(amt);

a._deposit(amt);

b.lock.unlock();

a.lock.unlock();

a.lock.unlock();

b.lock.unlock();

Possible Solutions?
Solution 1: Don’t bother locking transfer at all.
Bad because clients can see intermediary state.
Solution 2: Make a special mutex for “all transfers”
Bad because it doesn’t allow multiple transfers at once.
Solution 3: Order the locks (like with Dining Philosophers)

Banking Example Solution 22

Order The Locks By BankAccount id
1 void transfer(int amt, BankAccount b) {
2 assert(this.id != b.id);
3 BankAccount first = this.id < b.id ? this : b;
4 BankAccount second = this.id > b.id ? this : b;
5 first.lock.lock();
6 second.lock.lock();
7 this._withdraw(amt);
8 b._deposit(amt);
9 second.lock.unlock();

10 first.lock.unlock();
11 }

Now, we can’t get deadlock, because every transfer will acquire the
locks in the same order.



Okay, Race Conditions and Deadlock Suck. . . 23

This stuff is hard. How do we go about programming concurrent code in
practice? For the rest of the lecture, we’ll talk about best practices and
conventional wisdom.
Three Choices

All Memory

Thread-Local
Memory

Immutable
Memory

Needs Synchronization

Thread-Local Memory 24

Definition (Thread-Local Memory)
Thread-Local Memory is only used by a single thread. All the instance
variables in the RecursiveTasks we’ve been writing are Thread-Local
Memory.

If a thread has its own copy of a resource, then we don’t have to worry
about other threads updating it.

This only works if the threads don’t need to share the resource.

Example
Random Objects don’t need to be shared
In p3, you will make a copy of the Board object for each thread to
work with.

Immutable Memory 25

Definition (Immutable Memory)
Immutable Memory is memory that never changes. All the input arrays
we’ve been passing to RecursiveTasks have been Immutable Memory.

If none of the threads write to the location, then they can all share the
same copy!

Example
Generally, input data structures won’t be mutated.
In p3, you will share Move objects between threads (since they never
change).

What’s Left? 26

If it’s not possible to use Thread-Local Memory or Immutable Memory
for a task, we’re stuck with using synchronization.

Try as much as possible to minimize this category

If we must use synchronization, . . .

Guideline #0: Avoid Data Races
Never allow two threads to write/write or read/write to the same
location at the same time. (Avoid this with mutexes.)

Guideline #1: Use Consistent Locking
For each location needing synchronization, have a lock that is always
held when reading or writing the location.

Use the same lock to guard multiple locations when it makes sense
Clearly document what each lock is for
Conceptually partition shared-and-mutable locations into “which
lock”

But how much should each lock be responsible for?



Lock Granularity 27

Guideline #2: Start With Fewer Locks
Start with fewer locks (coarse-grained) and move to more (fine-grained)
only if contention on the locks becomes an issue.

Definition (Coarse-Grained)
Fewer Locks (more objects/lock)

Lock for entire data
structure (e.g., array)
Lock for all bank accounts

Definition (Fine-Grained)
More Locks (fewer objects/lock)

Lock per data element
(e.g., array index)
Lock per bank account

Coarse-Grained Advantages
Simpler to implement
Faster/easier to implement
operations that access
multiple locations
Much easier for operations
that modify data-structure
shape

Fine-Grained Advantages
More simultaneous access
Can make multi-node
operations more difficult:
say, rotations in an AVL tree

Lock Granularity Example: Separate Chaining Hashtable 28

Lock for entire hashtable (coarse) vs. Lock per bucket (fine)

Which supports more concurrency for insert and lookup?
Fine-grained; allows simultaneous access to different buckets

Which makes implementing resize easier?
Coarse-grained; just grab one lock and proceed

If a hashtable has a numElements field, maintaining it will destroy
the benefits of using separate locks for each bucket, why?
Updating it each insert without a lock would be a data race

Critical Section Granularity 29

Guideline #3: Keep Critical Sections Small
Don’t do expensive computations or I/O in critical sections, but also
don’t introduce race conditions. In other words, keep critical sections as
small as possible without being incorrect.

If critical sections are too long, it’s a huge performance loss.

If critical sections are too short, we get race conditions (visible
intermediary state).

Atomicity & Libraries 30

Guideline #4: Think About Atomicity
Think in terms of what operations need to be atomic and make critical
sections just long enough to preserve atomicity. Then, design the locking
protocol to implement the critical sections correctly.

Guideline #5: Use Libraries
Avoid implementing data structure synchronization as much as possible.
Most languages have built-in libraries to handle frequent needs.

For example, ConcurrentHashMap is written by world-experts who know
what they are doing. It would be silly to write your own.



Some Final Words on Synchronization 31

Java has a special syntax called synchronized for locking:

Our Code
1 method() {
2 lock.lock();
3 doStuff();
4 lock.unlock();
5 }

In Java
1 method() {
2 synchronized(this) {
3 doStuff();
4 }
5 }

This code treats the actual object as the lock.

Other Synchronization Primitives
Condition Variables have signal and wait methods. wait allows a
thread to wait until some condition is true. signal wakes the
thread up at the right time.
Reader-Writer Locks allow threads to declare if they are reading or
writing to a resource. These allow multiple readers at the same time.
. . . and others.


