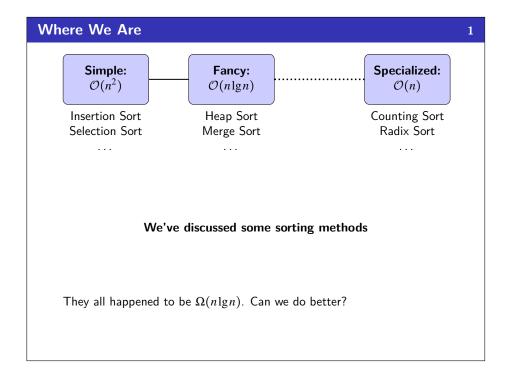
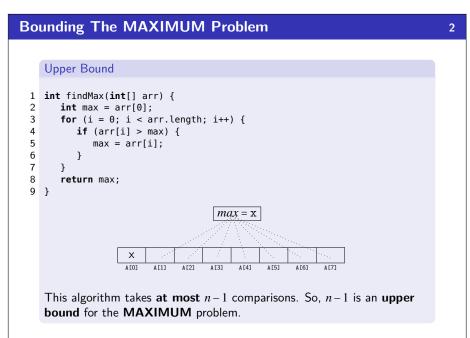
Adam Blank	Lecture 12/13	Summer 2015	CSE 332: Data Abstractions
			Sorting
	332 332		*Le skittles*
D	ata Abstraction	ıs	*Le sort*





what i'm doing

Bounding The MAXIMUM Problem

Lower Bounds are much more difficult to prove. We must show that **any** algorithm that solves the problem has to do something.

Lower Bound (Proof #1)

Consider an algorithm that solves the **MAXIMUM** problem in **fewer** than n-1 comparisons.

Since the algorithm uses fewer than n-1 comparisons, there must be some element of the input that wasn't compared to anything (say it's x):

ĺ	a_0	a_1	a_2	x	<i>a</i> ₃	a_4	a_5	a_6
	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]

Consider two distinct values for *x*:

- $x = \min(a_0, a_1, a_2, \dots, a_n) 1$
- $x = \max(a_0, a_1, a_2, \dots, a_n) + 1$

Notice that, to be correct, the algorithm must output **different** answers based on the value of x.

But it never examines *x*! So, it must always output the same thing on otherwise identical arrays.

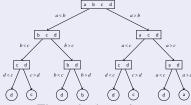
Bounding The MAXIMUM Problem

Key Ideas

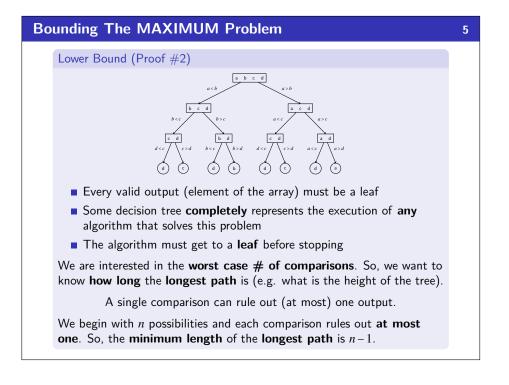
- Must be able to output any valid answer (every index is the max for some input)
- The only computations that give information about the correct answer are the comparisons
- Must only have one valid possibility remaining before answering

Decision Tree

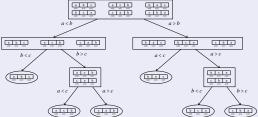
Consider the comparisons some (arbitrary) algorithm makes:



This is a **decision tree**. The nodes have **the remaining valid possibilities**. The edges represent **making a comparison**.



The Main Event!



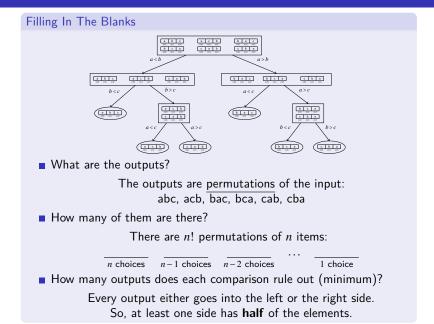
- Every valid output (?????) must be a leaf
- Some decision tree completely represents the execution of any algorithm that solves this problem
- The algorithm must get to a leaf before stopping

We are interested in the **worst case # of comparisons**. So, we want to know **how long** the **longest path** is (e.g. what is the height of the tree).

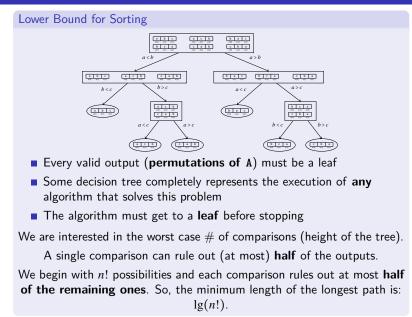
A single comparison can rule out (at most) ??????? output.

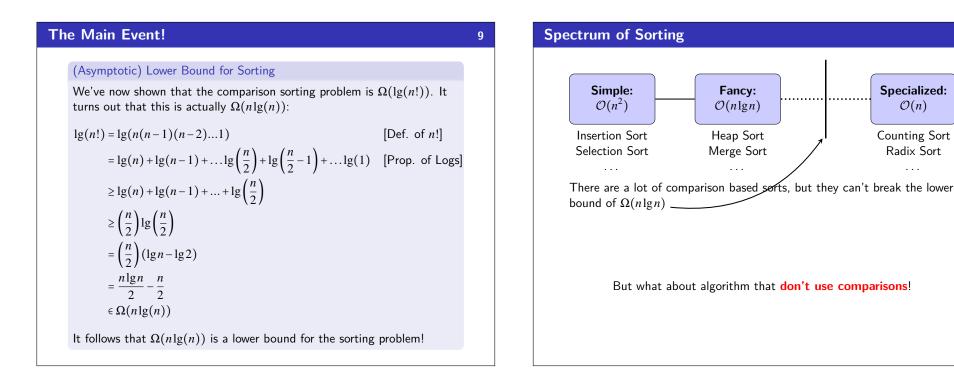
We begin with **????** possibilities and each comparison rules out **?????**. So, the **minimum length** of the **longest path** is **????**

The Main Event!



The Main Event!





8

Bounded Set Returns!

11

13

Remember the assumption we made for the BoundedSet ADT?

BoundedSet ADT

Data	Set of numerical keys where $0 \le k \le B$ for some $B \in \mathbb{N}$
insert(key)	Adds key to set
find(key)	Returns true if key is in the set and false otherwise
delete(key)	Deletes key from the set

The only difference between Set and BoundedSet is that BoundedSet comes with an upper bound of B.

Suppose we have integers between 1 and B (just like BoundedSet). How could we go about sorting them?

Counting Sort

- Create an int array of size B
- Loop through the elements and increment their counts
- Then, loop through the array and output each element found

Counting Sort

Counting Sort

Assuming all data is ints between 1 and B:

- Create an int array of size B
- Loop through the elements and increment their counts
- Then, loop through the array and output each element found

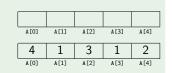
Example

Input: 51332134511 (*B* = 5)

- Initialize the array:
- Loop through the elements:

Loop through the indices

Output: 11112333455



Counting Sort Analysis

Counting Sort

Assuming all data is ints between 1 and B:

- Create an int array of size B
- Loop through the elements and increment their counts
- Then, loop through the array and output each element found

Analysis

Best Case?

 $\mathcal{O}(n+B)$

Worst Case?

 $\mathcal{O}(n+B)$

- Why doesn't the sorting lower bound apply?
 It's not a comparison sort! We actually didn't use comparisons at all!
- When should we use Counting Sort?

We should use Counting Sort when $n \approx B$.

Radix Sort

Radix Sort

- Choose a "number" representation (e.g. (100)₁0 = (1100100)₂ = (d)₁₂₈)
- For each digit from least significant to most significant, do a stable sort (why stable?)

Usually for the sorting step, we use **counting sort**.

	Example
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	478 537 009 721 003 038 143

Counting Sort: Analysis

15

Radix Sort

- Choose a "number" representation (e.g. (100)₁0 = (1100100)₂ = (d)₁₂₈). Say base B.
- For each digit from least significant to most significant, do a stable COUNTING sort. Say there are P passes.

Analysis

Best Case?

 $\mathcal{O}(P(B+n))$

Worst Case?

 $\mathcal{O}(P(B+n))$

- Should we use radix sort? Consider Strings of English letters up to length 15:
 - Radix Sort will take 15(52 + n)
 - For *n* < 33,000, *n*lg*n* wins.

Applications and Related Problems

Possibly the most useful application of sorting is as a form of **pre-processing**. We sort the input in $\mathcal{O}(n\lg n)$ and then solve the actual problem using the sorted data. (e.g. if we expect to do more than $\mathcal{O}(n)$ finds, the sorting step is worth it)

Big CS Idea!

To make a repeated operation easier, do an expensive **pre-processing step** once. You saw this with DFAs and String Matching in CSE 311 as well!

The **median** problem has already come up. Let's explore it more!

What is **SELECT**?

17

SELECT is the computational problem with the following requirements:

Inputs

- An array A of E data of length L and a number $0 \le k < L$.
- A consistent, total ordering on all elements of type E:

compare(a, b)

Post-Conditions

- The array remains unchanged.
- Let B be the ordering that **SORT** would return. We return B(k).

An Algorithm to Solve SELECT

Solving **SELECT**(*k*)

- Copy A into B
- Sort B
- Return (B(k))
- Awesome, except this is $\mathcal{O}(n \lg n)$

Another idea, instead of "sorting", only sort the parts we need.

QuickSort: A Reminder

- Choose a pivot in A: p
- Partition A into two arrays: SMALLER and LARGER
- QuickSort SMALLER.
- QuickSort LARGER.
- **SMALLER** + [p] + LARGER is a sorted array.

Idea: To find the k-th element, do we need to recurse on both sides?

An Algorithm to Solve SELECT

19

QuickSelect

?? 20

QuickSelect(A, k)

- Choose a pivot in A: p
- Partition A into two arrays: SMALLER and LARGER
- Since we know how big SMALLER and LARGER are, we know the final index of p. Call this x.
- If k = x, return p.
- If *k* < x, return QuickSelect(SMALLER, *k*)
- If k > x, return QuickSelect(LARGER, k x)

Analysis

- Best Case: T(n) = T(n/2) + cn (So, $\mathcal{O}(n)$)
- Worst Case: T(n) = T(n-1) + cn (So, $\mathcal{O}(n^2)$)
- (Average Case is $\mathcal{O}(n)$)

Deterministic QuickSelect (Median-of-Medians)

21

Median-of-Medians

- **Split** A into g = n/5 groups of 5 elements.
- Sort each group and find the medians: $m_1, m_2, \ldots, m_{n/5}$
- Find *p*: the median of the medians (recursively...)
- Separate the input into two groups SMALLER and LARGER and recurse on the appropriate piece

This algorithm is "basically" **QuickSelect**, but with a special pivot.

Analysis

The key to this algorithm is that whichever side we recurse on is at least 3/10 of the input. Here's why:

- Consider SMALLER. We know that at least g/2 of the groups have a median $\ge p$. Of the 5 elements in each of these groups, since the median is $\ge p$, 3 of them are $\ge p$ (possibly including the median). Putting this together, we have 3(g/2) = 3((n/5)/2) = 3n/10 elements $\ge p$. This means we **know** we will discard at least this many. So, the maximum number of elements we could recurse on is 7n/10.
- The other case is symmetric.

40

A[3]

Deterministic QuickSelect (Solving the Recurrence)

 $median = 4^{th}$

A[1] A[2]

A[1] A[2]

20

20 50 70 10 60 40 30

Choose Pivot

A[5]

A[2]

50

Choose Pivot

50 70 60 40 30

A[3] A[4] A[5] A[6]

A[3] A[4] A[5]

50 ?? ??

Choose Pivot
70 60 40 30

50

?? 7?

22

A[5]

50 70 10 60 40 30

median = $4 - 2 = 2^{nd}$

median = 2^{nd}

A[2]

40 A[2] A[3]

30 A[3]

A[3] A[4]

A[3] A[4] A[5]

Median-of-Medians

Split A into g = n/5 groups of 5 elements.

?? 20 30

A[1]

- Sort each group and find the medians: $m_1, m_2, \ldots, m_{n/5}$
- Find p: the median of the medians (we're gonna do this recursively...)
- Separate the input into two groups SMALLER and LARGER and recurse on the appropriate piece

Solving The Recurrence

So, putting all this together gives us the recurrence

$$T(n) \leq \mathcal{O}(5\lg 5)\left(\frac{n}{5}\right) + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$$

= $cn + T\left(\frac{2n}{10}\right) + T\left(\frac{7n}{10}\right)$
= $cn + \left(\frac{2n}{10} + T\left(2\left(\frac{2n}{10}\right)\right) + T\left(7\left(\frac{2n}{10}\right)\right)\right)$
+ $\left(\frac{7n}{10} + T\left(2\left(\frac{7n}{10}\right)\right) + T\left(7\left(\frac{7n}{10}\right)\right)\right)$
= $cn + \frac{9n}{10} + T\left(\frac{2^2n}{10^2}\right) + 2T\left(7 \times 2 \times \left(\frac{n}{10^2}\right)\right) + T\left(\frac{7^2n}{10^2}\right)$



