P vs. NP:
 Efficient Reductions Between Problems

Decision Problems

Definition (Decision Problem)

A decision problem (or language) is a set of strings ($L \subseteq \Sigma^{*}$).
An algorithm ($f: \Sigma^{*} \rightarrow$ boolean) solves a decision problem iff it only outputs true if the input is in the set.

An Algorithm that solves PRIMES
isPrime(x) \{
for ($\mathrm{i}=2$; $\mathrm{i}<\mathrm{x}$; $\mathrm{i}+\mathrm{+}$) \{
if ($\mathrm{x} \% \mathrm{i}==0$) $\{$
return true;
\}
\}
return false;
\}

In this lecture, we'll be talking about efficient reductions. So, naturally, we have to answer two questions:

- What is an efficient algorithm?
- What is a reduction?

Efficient Algorithm

We say an algorithm is efficient if the worst-case analysis is a polynomial. Okay, but. .

- $n^{10000000} \ldots$ is polynomial
- $3000000000000000 n^{3}$ is polynomial

Are those really efficient?
Well, no, but, in practice...
when a polynomial algorithm is found the constants are actually low

Polynomial runtime is a very low bar, if we can't even get that. . .

Longest Paths and HAM!

Two New Computational Problems

LONG-PATH	
Input(s): Output:	Unweighted Graph $G ;$ Number k true iff G has a path with k edges

Suppose we could solve LONG-PATH.

```
"Algorithm"
HAM-PATH(G) {
    return LONG-PATH(G, |V| - 1)
3}
```

Suppose we could solve HAM-PATH.

```
"Algorithm"
1 LONG-PATH(G, k) {
    for (G' = (v , ,v2,\ldots,v,}) in G) 
        if (HAM-PATH(G')) {
                return true;
            }
    }
    return false;
```

This lecture is about exposing hidden similarities between problems.

We will show that problems that are cosmetically different are substantially the same!

Our main tool to do this is called a reduction:

Reductions

We have two decision problems, \mathbf{A} and \mathbf{B}. To show that \mathbf{A} is "at least as hard as" B, we

- Suppose we can solve \mathbf{A}
- Create an algorithm that calls \mathbf{A} as a method that solves \mathbf{B}

To show they're the same, we have to do both directions.

A 2-CRAYOLA Question

Definition (k-coloring)

A k-coloring of a graph G is an assignment of k colors to vertices such that no two adjacent vertices have the same color.

2-COLOR	
Input(s):	Graph G
Output:	true iff G has a valid 2-coloring

Can we solve this?

Algorithm For 2-COLOR

Try all 2^{n} possible colorings of the input graph!

Can we solve this efficiently?

Efficient Algorithm For 2-COLOR
Do a dfs on the graph! Every time we hit a vertex, assign it the opposite color from the vertex we just visited. If there's a color conflict, output false. If we finish with no color conflict, output true.

A 3-CRAYOLA Question

Definition (k-coloring)

A k-coloring of a graph G is an assignment of k colors to vertices such that no two adjacent vertices have the same color.

3-COLOR	
Input(s): Graph G Output: true iff G has a valid 3-coloring	

Inefficient Algorithm For 3-COLOR

Try all 3^{n} possible colorings of the input graph!

Efficient Algorithm For 3-COLOR
UNKNOWN

Another Decision Problem!

CIRCUITSAT	
Input(s):	n-Input/1-Output Circuit C
Output:	true iff C has a satisfying assignment

Inefficient Algorithm For CIRCUITSAT

Try all 2^{n} possible assignments of variables

Efficient Algorithm For CIRCUITSAT
UNKNOWN

Find a valid 3-coloring of this graph. To orient ourselves, I've started it:

OUT

We don't know how to solve either of these problems...
Could they be the same problem in disguise?

Not Gadget with Labels

Or Gadget with Labels

x

OUT

SATISFIABLE Circuit

We found a way to "emulate" circuit satisfiability using three coloring!

If we can find a solution to 3 -COLOR, we can solve CIRCUITSAT quickly.

These problems are substantially the same

Complexity Classes

Definition (Complexity Class)

A complexity class is a set of problems limited by some resource contraint (time, space, etc.)

Today, we will talk about three: P, NP, and EXP
 \section*{P vs. NP:
 \section*{P vs. NP:

 The Million \$ Problem}

 The Million \$ Problem}

The Class P

Definition (The Class P)

P is the set of decision problems with a polynomial time (in terms of the input) algorithm.

We've spent pretty much this entire course talking about problems in P. For example:

CONN $\in P$

dfs solves CONN and takes $\mathcal{O}(|V|+|E|)$, which is the size of the input string (e.g., the graph).

2-COLOR $\in P$
We showed this earlier!

How About These? Are They in P?

- 3-COLOR?
- CIRCUITSAT?
- LONG-PATH?
- FACTOR?

We have no idea!

There are a lot of open questions about P...

But Is There Something NOT in P?

YES: The Halting Problem!
YES: Who wins a game of $n \times n$ chess?

As one might expect, there is another complexity class EXP:

Definition (The Class EXP)

EXP is the set of decision problems with an exponential time (in terms of the input) algorithm.

Generalized CHESS \in EXP.

Notice that $\mathrm{P} \subseteq$ EXP. That is, all problems with polynomial time worst-case solutions also have exponential time worst-case solutions.

Certifiers and NP

Definition (Certifier)

A certifier for problem \mathbf{X} is an algorithm that takes as input:

- A String s, which is an instance of \mathbf{X} (e.g., a graph, a number, a graph and a number, etc.)
- A String w, which acts as a "certificate" or "witness" that $s \in \mathbf{X}$

And returns:

- false (regardless of w) if $s \notin \mathbf{X}$
- true for at least one String w if $s \in \mathbf{X}$

Definition \#2 of NP:

Definition (The Class NP)

NP is the set of decision problems with a polynomial time certifier.
A consequence of the fact that the certifier must run in polynomial time is that the valid "witness" must have polynomial length or the certifier wouldn't be able to read it.

We claim 3-COLOR $\in N P$. To prove it, we need to find a certifier.

Certificate?

We get to choose what the certifier interprets the certificate as. For 3-COLOR, we choose:

An assignment of colors to vertices (e.g., $v_{1}=\mathrm{red}, v_{2}=\mathrm{blue}, v_{3}=\mathrm{red}$)

Certifier

checkColors(G, assn) \{
if (assn isn't an assignment or G isn't a graph) \{ return false;
for
for (v: V) \{
for (w : v.neighbors()) \{
if (assn[v] == assn[v]) \{ return false;
\}
\}
return true;
12 \}
For this to work, we need to check a couple things:
1 Length of the certificate? $\mathcal{O}(|V|)$
2 Runtime of the certifier? $\mathcal{O}(|V|+|E|)$

We claim $\operatorname{FACTOR} \in N P$. To prove it, we need to find a certifier.

```
Certificate?
                Some factor f}\mathrm{ with f sm
```

```
Certifier
checkFactor((n, m), f) {
    if (n, m, or f isn't a number) {
        return false;
    }
    return m % f == 0;
6}
For this to work, we need to check a couple things:
1 Length of the certificate? \(\mathcal{O}\) (bits of \(m\) )
2 Runtime of the certifier? \(\mathcal{O}\) (bits of \(n\) )
```


Proving $\mathrm{P} \subseteq \mathrm{NP}$

Let $\mathbf{X} \in P$. We claim $\mathbf{X} \in N P$. To prove it, we need to find a certifier.

Certificate?

We don't need one!

Certifier

1 runX(s, _) \{
$\left.\begin{array}{l}2 \\ 3\end{array}\right\}$
return XAlgorithm(s)

For this to work, we need to check a couple things:
11 Length of the certificate? $\mathcal{O}(1)$.
2 Runtime of the certifier? Well, $\mathbf{X} \in \mathrm{P} \ldots$

In other words, if $\mathbf{X} \in P$, then there is a polynomial time algorithm that solves \mathbf{X}.
So, the "verifier" just runs that program...

P vs. NP

Finally, we can define P vs. NP...
Is finding a solution harder than certification/verification?

Another way of looking at it. If $\mathrm{P}=\mathrm{NP}$:

- We can solve 3-COLOR, TSP, FACTOR, SAT, etc. efficiently
- If we can solve FACTOR quickly, there goes RSA. . . oops

Cook-Levin Theorem

Three Equivalent Statements:

- CIRCUITSAT is "harder" than any other problem in NP.

Some NP-Complete Problems
CIRCUITSAT, TSP, 3-COLOR, LONG-PATH, HAM-PATH,

- CIRCUITSAT "captures" all other languages in NP.
- CIRCUITSAT is NP-Hard.

But we already proved that 3-COLOR is "harder" than CIRCUITSAT! So, 3-COLOR is also NP-Hard.

Definition (NP-Complete)

A decision problem is NP-Complete if it is a member of NP and it is NP-Hard. SCHEDULING, SUBSET-SUM,

Interestingly, there are a bunch of problem we don't know the answer for:

Some Problems Not Known To Be NP-Complete

Is there an NP-Hard problem, \mathbf{X}, where \mathbf{X} is not NP-Complete?
Yes. The halting problem!

