
Adam Blank Summer 2015Lecture 23a

CSE332
Data Abstractions

CSE 332: Data Abstractions

P vs. NP:
E�cient Reductions
Between Problems

More Graph Problems 1

Let’s consider the longest path problem on a graph.

Remember, we were able to do shortest paths using Dijkstra’s.

Take a few minutes to try to solve the longest path problem.

Decision Problems 2

Definition (Decision Problem)
A decision problem (or language) is a set of strings (L ⊆ S∗).
An algorithm (f ∶ S∗→ boolean) solves a decision problem i� it only
outputs true if the input is in the set.

PRIMES

Input(s): Number x

Output: true i� x is prime

An Algorithm that solves PRIMES
1 isPrime(x) {
2 for (i = 2; i < x; i++) {
3 if (x % i == 0) {
4 return true;
5 }
6 }
7 return false;
8 }

E�cient? 3

In this lecture, we’ll be talking about e�cient reductions. So, naturally,
we have to answer two questions:

What is an e�cient algorithm?
What is a reduction?

E�cient Algorithm
We say an algorithm is e�cient if the worst-case analysis is a
polynomial. Okay, but. . .

n

10000000... is polynomial
3000000000000000n

3 is polynomial
Are those really e�cient?
Well, no, but, in practice. . .

when a polynomial algorithm is found the constants are actually low

Polynomial runtime is a very low bar, if we can’t even get that. . .

Reductions 4

This lecture is about exposing hidden similarities between problems.

We will show that problems that are cosmetically di�erent are
substantially the same!

Our main tool to do this is called a reduction:
Reductions
We have two decision problems, A and B. To show that A is “at least
as hard as” B, we

Suppose we can solve A
Create an algorithm that calls A as a method that solves B

To show they’re the same, we have to do both directions.

Longest Paths and HAM! 5

Two New Computational Problems

LONG-PATH

Input(s): Unweighted Graph G; Number k

Output: true i� G has a path with k edges

HAM-PATH

Input(s): Unweighted Graph G

Output: true i� G has a path using all vertices

Suppose we could solve LONG-PATH. . . Suppose we could solve HAM-PATH. . .

“Algorithm”
1 HAM−PATH(G) {
2 return LONG−PATH(G, |V| − 1)
3 }

“Algorithm”
1 LONG−PATH(G, k) {
2 for (G

′ =(v1,v2, . . . ,v
k

) in G) {
3 if (HAM−PATH(G

′)) {
4 return true;
5 }
6 }
7 return false;
8 }

A 2-CRAYOLA Question 6

Definition (k-coloring)
A k-coloring of a graph G is an assignment of k colors to vertices such
that no two adjacent vertices have the same color.

2-COLOR

Input(s): Graph G

Output: true i� G has a valid 2-coloring

Can we solve this?

Algorithm For 2-COLOR
Try all 2n possible colorings of the
input graph!

Can we solve this e�ciently?

E�cient Algorithm For 2-COLOR
Do a dfs on the graph! Every
time we hit a vertex, assign it the
opposite color from the vertex we
just visited. If there’s a color
conflict, output false. If we
finish with no color conflict,
output true.

A 3-CRAYOLA Question 7

Definition (k-coloring)
A k-coloring of a graph G is an assignment of k colors to vertices such
that no two adjacent vertices have the same color.

3-COLOR

Input(s): Graph G

Output: true i� G has a valid 3-coloring

Ine�cient Algorithm For 3-COLOR
Try all 3n possible colorings of the input graph!

E�cient Algorithm For 3-COLOR
UNKNOWN

A Graph Called “Gadget” 8

Find a valid 3-coloring of this graph. To orient ourselves, I’ve started it:

Another Decision Problem! 9

CIRCUITSAT

Input(s): n-Input/1-Output Circuit C

Output: true i� C has a satisfying assignment

Ine�cient Algorithm For CIRCUITSAT
Try all 2n possible assignments of variables

E�cient Algorithm For CIRCUITSAT
UNKNOWN

Suspicious. . . 10

CIRCUITSAT

OR
NOT

OR

X Y Z

OUT

3-COLOR

a

bc

d

e f

g

We don’t know how to solve either of these problems. . .

Could they be the same problem in disguise?

Not Gadget with Labels 11

X

OUT

T F

X

OUT

Or Gadget with Labels 12

X Y

OUT

T F

X Y

OUT

Circuit 13

OR
NOT

OR

X Y Z

OUT

T F

X Y Z

OUT

SATISFIABLE Circuit 14

OR
NOT

OR

X Y Z

true

T F

X Y Z

true

Lesson 15

We found a way to “emulate” circuit satisfiability using three coloring!

If we can find a solution to 3-COLOR, we can solve CIRCUITSAT
quickly.

These problems are substantially the same

Adam Blank Summer 2015Lecture 23b

CSE332
Data Abstractions

CSE 332: Data Abstractions

P vs. NP:
The Million $ Problem

Complexity Classes 1

Definition (Complexity Class)
A complexity class is a set of problems limited by some resource
contraint (time, space, etc.)

Today, we will talk about three: P, NP, and EXP

The Class P 2

Definition (The Class P)
P is the set of decision problems with a polynomial time (in terms of
the input) algorithm.

We’ve spent pretty much this entire course talking about problems in P.

For example:

CONN

Input(s): Graph G
Output: true i� G is connected

CONN ∈ P
dfs solves CONN and takes O(�V �+ �E �), which is the size of the input
string (e.g., the graph).

2-COLOR ∈ P
We showed this earlier!

And Others? 3

How About These? Are They in P?
3-COLOR?
CIRCUITSAT?
LONG-PATH?
FACTOR?

We have no idea!

There are a lot of open questions about P. . .

The Class EXP 4

But Is There Something NOT in P?
YES: The Halting Problem!
YES: Who wins a game of n×n chess?

As one might expect, there is another complexity class EXP:

Definition (The Class EXP)
EXP is the set of decision problems with an exponential time (in terms
of the input) algorithm.

Generalized CHESS ∈ EXP.

Notice that P ⊆ EXP. That is, all problems with polynomial time
worst-case solutions also have exponential time worst-case solutions.

Okay, now NP. . . 5

But a digression first. . .

Remember Finite State Machines?
You studied two types:

DFAs (go through a single path to an end state)
NFAs (go through all possible paths simultaneously)

NFAs “try everything” and if any of them work, it returns true. This idea
is called Non-determinism. It’s what the “N” in NP stands for.

Definition #1 of NP:

Definition (The Class NP)
NP is the set of decision problems with a non-deterministic
polynomial time (in terms of the input) algorithm.

Unfortunately, this isn’t particularly helpful to us. So, we’ll turn to an
equivalent (but more usable) definition.

Certifiers and NP 6

Definition (Certifier)
A certifier for problem X is an algorithm that takes as input:

A String s, which is an instance of X (e.g., a graph, a number, a
graph and a number, etc.)
A String w, which acts as a “certificate” or “witness” that s ∈X

And returns:
false (regardless of w) if s �∈X
true for at least one String w if s ∈X

Definition #2 of NP:

Definition (The Class NP)
NP is the set of decision problems with a polynomial time certifier.

A consequence of the fact that the certifier must run in polynomial time
is that the valid “witness” must have polynomial length or the certifier
wouldn’t be able to read it.

Okay, this makes no sense, example plx? 7

We claim 3-COLOR ∈NP. To prove it, we need to find a certifier.

Certificate?
We get to choose what the certifier interprets the certificate as. For
3-COLOR, we choose:

An assignment of colors to vertices (e.g., v1 = red,v2 = blue,v3 = red)

Certifier
1 checkColors(G, assn) {
2 if (assn isn’t an assignment or G isn’t a graph) {
3 return false;
4 }
5 for (v : V) {
6 for (w : v.neighbors()) {
7 if (assn[v] == assn[v]) {
8 return false;
9 }

10 }
11 return true;
12 }

For this to work, we need to check a couple things:
1 Length of the certificate? O(�V �)
2 Runtime of the certifier? O(�V �+ �E �)

FACTOR 8

CONN

Input(s): Number n; Number m
Output: true i� n has a factor f , where f ≤m

We claim FACTOR ∈NP. To prove it, we need to find a certifier.

Certificate?
Some factor f with f ≤m

Certifier
1 checkFactor((n, m), f) {
2 if (n, m, or f isn’t a number) {
3 return false;
4 }
5 return m % f == 0;
6 }

For this to work, we need to check a couple things:
1 Length of the certificate? O(bits of m)
2 Runtime of the certifier? O(bits of n)

Proving P ⊆NP 9

Let X ∈ P. We claim X ∈NP. To prove it, we need to find a certifier.

Certificate?
We don’t need one!

Certifier
1 runX(s, _) {
2 return XAlgorithm(s)
3 }

For this to work, we need to check a couple things:
1 Length of the certificate? O(1).
2 Runtime of the certifier? Well, X ∈ P. . .

In other words, if X ∈ P, then there is a polynomial time algorithm that
solves X.
So, the “verifier” just runs that program. . .

P vs. NP 10

Finally, we can define P vs. NP. . .

Is finding a solution harder than certification/verification?

If P ≠NP
All

HALT

EXP
CHESS

NP
CIRCUITSAT

P
2-COLOR

If P =NP
All

HALT

EXP
CHESS

P = NP
CIRCUITSAT

2-COLOR

Another way of looking at it. If P =NP:
We can solve 3-COLOR, TSP, FACTOR, SAT, etc. e�ciently
If we can solve FACTOR quickly, there goes RSA. . . oops

How Could We Even Prove P =NP? 11

Cook-Levin Theorem
Three Equivalent Statements:

CIRCUITSAT is “harder” than any other problem in NP.
CIRCUITSAT “captures” all other languages in NP.
CIRCUITSAT is NP-Hard.

But we already proved that 3-COLOR is “harder” than CIRCUITSAT!
So, 3-COLOR is also NP-Hard.

Definition (NP-Complete)
A decision problem is NP-Complete if it is a member of NP and it is
NP-Hard.

Is there an NP-Hard problem, X, where X is not NP-Complete?

Yes. The halting problem!

And? 12

Some NP-Complete Problems
CIRCUITSAT, TSP, 3-COLOR, LONG-PATH, HAM-PATH,
SCHEDULING, SUBSET-SUM, . . .

Interestingly, there are a bunch of problem we don’t know the answer for:

Some Problems Not Known To Be NP-Complete
FACTOR, GRAPH-ISOMORPHISM, . . .

