Adam Blank	Lecture 23a	Summer 2015
	CSE	
	イメイ	
	イイン	
	552	
D	ata Abstraction	ns

P vs. NP: Efficient Reductions Between Problems

More Graph Problems

Let's consider the **longest path** problem on a graph.

Remember, we were able to do **shortest paths** using Dijkstra's.

Take a few minutes to try to solve the longest path problem.

Decision Problems

1

Definition (Decision Problem)

A decision problem (or language) is a set of strings $(L \subseteq \Sigma^*)$. An algorithm $(f : \Sigma^* \to boolean)$ solves a decision problem iff it only outputs true if the input is in the set. 2

PRIMES Input(s): Number x Output: true iff x is prime

An Algorithm that solves **PRIMES**

```
1 isPrime(x) {
2   for (i = 2; i < x; i++) {
3      if (x % i == 0) {
4         return true;
5      }
6   }
7   return false;
8 }</pre>
```

Efficient?

In this lecture, we'll be talking about **efficient reductions**. So, naturally, we have to answer two questions:

- What is an efficient algorithm?
- What is a reduction?

Efficient Algorithm

We say an algorithm is **efficient** if the worst-case analysis is a **polynomial**. Okay, but...

- $n^{10000000...}$ is polynomial
- **3000000000000000** n^3 is polynomial

Are those really efficient?

Well, no, but, in practice...

when a polynomial algorithm is found the constants are actually low

Polynomial runtime is a very low bar, if we can't even get that...

Reductions

3

5

This lecture is about exposing hidden similarities between problems.

We will show that problems that are **cosmetically different** are **substantially the same**!

Our main tool to do this is called a **reduction**:

Reductions

We have two **decision problems**, \boldsymbol{A} and $\boldsymbol{B}.$ To show that \boldsymbol{A} is "at least as hard as" $\boldsymbol{B},$ we

- Suppose we can solve A
- Create an algorithm that calls **A** as a method that solves **B**
- To show they're the same, we have to do both directions.

Longest Paths and HAM!

Two New Computational Problems

LONG-PATH

Input(s):Unweighted Graph G; Number kOutput:true iff G has a path with k edges

HAM-PATH

Input(s): Unweighted Graph G
Output: true iff G has a path using all vertices

Suppose we could solve LONG-PATH...

Suppose we could solve HAM-PATH...

	"Algorithm"		"Algorithm"
1	HAM-PATH(G) {	1	LONG-PATH(G, k) {
2	<pre>return LONG-PATH(G, V - 1)</pre>	2	for $(G' = (v_1, v_2, \dots, v_k)$ in G) {
3	}	3	if (HAM-PATH(G')) {
		4	return true;
		5	}
		6	}
		7	return false;
		8	}

A 2-CRAYOLA Question

Definition (*k*-coloring)

A k-coloring of a graph G is an assignment of k colors to vertices such that no two adjacent vertices have the same color.

2-COLOR

Input(s): Graph G **Output**: true iff G has a valid 2-coloring

Can we solve this?

Algorithm For 2-COLOR

Can we solve this efficiently?

Efficient Algorithm For 2-COLOR

Try all 2^n possible colorings of the input graph!

Do a dfs on the graph! Every time we hit a vertex, assign it the opposite color from the vertex we just visited. If there's a color conflict, output false. If we finish with no color conflict, output true.

4

6

A 3-CRAYOLA Question

7

Definition (*k*-coloring)

A k-coloring of a graph G is an assignment of k colors to vertices such that no two adjacent vertices have the same color.

3-COLOR

Input(s): Graph G **Output**: true iff G has a valid 3-coloring

Inefficient Algorithm For 3-COLOR

Try all 3^n possible colorings of the input graph!

Efficient Algorithm For **3-COLOR**

UNKNOWN

A Graph Called "Gadget"

Find a valid 3-coloring of this graph. To orient ourselves, I've started it:

Another Decision Problem! 9 CIRCUITSAT Input(s): n-Input/1-Output Circuit C Output: true iff C has a satisfying assignment Inefficient Algorithm For CIRCUITSAT Try all 2ⁿ possible assignments of variables Efficient Algorithm For CIRCUITSAT UNKNOWN

Lesson

We found a way to "emulate" circuit satisfiability using three coloring!

If we can find a solution to **3-COLOR**, we can solve **CIRCUITSAT** quickly.

These problems are substantially the same

Adam Blank	Lecture 23b	Summer 2015
	メメイ	
	332	
-		
D	ata Abstraction	าร

P vs. NP: The Million \$ Problem

Complexity Classes

1

Definition (Complexity Class)

A **complexity class** is a set of problems limited by some resource contraint (time, space, etc.)

Today, we will talk about three: P, NP, and EXP

The Class P

Definition (The Class P)

P is the set of **decision problems** with a polynomial time (in terms of the input) algorithm.

2

We've spent pretty much this entire course talking about problems in P.

For example:

 CONN

 Input(s):
 Graph G

 Output:
 true iff G is connected

$\textbf{CONN} \in \mathsf{P}$

dfs solves **CONN** and takes $\mathcal{O}(|V| + |E|)$, which is the size of the input string (e.g., the graph).

2-COLOR ∈ P

We showed this earlier!

And Others?

How About These? Are They in P?

- **3-COLOR**?
- CIRCUITSAT?
- **LONG-PATH**?
- **FACTOR**?

We have no idea!

There are a lot of open questions about P...

The Class EXP

3

5

But Is There Something NOT in P?

YES: The Halting Problem! **YES:** Who wins a game of $n \times n$ chess?

As one might expect, there is another complexity class EXP:

Definition (The Class EXP)

EXP is the set of **decision problems** with an exponential time (in terms of the input) algorithm.

Generalized **CHESS** \in EXP.

Notice that $P \subseteq EXP$. That is, all problems with polynomial time worst-case solutions also have exponential time worst-case solutions.

Okay, now NP...

But a digression first...

Remember Finite State Machines?

You studied two types:

- DFAs (go through a single path to an end state)
- NFAs (go through all possible paths simultaneously)

NFAs "try everything" and if any of them work, it returns true. This idea is called **Non-determinism**. It's what the "N" in NP stands for.

Definition #1 of NP:

Definition (The Class NP)

NP is the set of **decision problems** with a **non-deterministic** polynomial time (in terms of the input) algorithm.

Unfortunately, this isn't particularly helpful to us. So, we'll turn to an equivalent (but more usable) definition.

Certifiers and NP

Definition (Certifier)

A certifier for problem **X** is an algorithm that takes as input:

- A String s, which is an instance of X (e.g., a graph, a number, a graph and a number, etc.)
- A String *w*, which acts as a "certificate" or "witness" that $s \in \mathbf{X}$ And returns:
 - false (regardless of w) if $s \notin X$
 - true for at least one String w if $s \in \mathbf{X}$

Definition #2 of NP:

Definition (The Class NP)

NP is the set of decision problems with a polynomial time certifier.

A consequence of the fact that the certifier must run in polynomial time is that the valid "witness" must have **polynomial length** or the certifier wouldn't be able to read it.

6

Okay, this makes no sense, example plx?

We claim **3-COLOR** \in NP. To prove it, we need to find a **certifier**.

Certificate?

We get to choose what the certifier interprets the certificate as. For $\ensuremath{\textbf{3-COLOR}}$, we choose:

An assignment of colors to vertices (e.g., $v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}$)

Certifier

```
1 checkColors(G, assn) {
      if (assn isn't an assignment or G isn't a graph) {
2
3
          return false;
4
5
       for (v : V) {
          for (w : v.neighbors()) {
6
7
             if (assn[v] == assn[v]) {
8
                return false;
9
             }
10
      }
11
       return true;
12 }
    For this to work, we need to check a couple things:
     1 Length of the certificate? \mathcal{O}(|V|)
```

2 Runtime of the certifier? $\mathcal{O}(|V| + |E|)$

CONN Input(s): Number n; Number m Output: true iff n has a factor f, where $f \le m$ We claim FACTOR \in NP. To prove it, we need to find a certifier. Certificate? Some factor f with $f \le m$

Proving $P \subseteq NP$

Let $\mathbf{X} \in \mathsf{P}$. We claim $\mathbf{X} \in \mathsf{NP}$. To prove it, we need to find a certifier.

Certificate?

We don't need one!

Certifier

```
1 runX(s, _) {
2 return XAlgorithm(s)
3 }
```

For this to work, we need to check a couple things:

- **1** Length of the certificate? $\mathcal{O}(1)$.
- **2** Runtime of the certifier? Well, $\mathbf{X} \in \mathsf{P}$...

In other words, if $\textbf{X} \in \mathsf{P},$ then there is a polynomial time algorithm that solves X.

```
So, the "verifier" just runs that \mathsf{program}\ldots
```

P vs. NP

9

Finally, we can define P vs. NP...

Is finding a solution harder than certification/verification?

Another way of looking at it. If P = NP:

- We can solve 3-COLOR, TSP, FACTOR, SAT, etc. efficiently
- If we can solve **FACTOR** quickly, there goes RSA...oops

10

How Could We Even Prove P = NP?

11

And?

Cook-Levin Theorem

Three Equivalent Statements:

- **CIRCUITSAT** is "harder" than any other problem in NP.
- **CIRCUITSAT** "captures" all other languages in NP.
- CIRCUITSAT is NP-Hard.

But we already proved that **3-COLOR** is "harder" than **CIRCUITSAT**! So, **3-COLOR** is **also NP-Hard**.

Definition (NP-Complete)

A decision problem is $\ensuremath{\text{NP-Complete}}$ if it is a member of NP and it is $\ensuremath{\text{NP-Hard}}.$

Is there an **NP-Hard** problem, **X**, where **X** is **not NP-Complete**?

Yes. The halting problem!

Some **NP-Complete** Problems

CIRCUITSAT, TSP, 3-COLOR, LONG-PATH, HAM-PATH, SCHEDULING, SUBSET-SUM, ...

Interestingly, there are a bunch of problem we don't know the answer for:

Some Problems Not Known To Be NP-Complete

FACTOR, GRAPH-ISOMORPHISM,