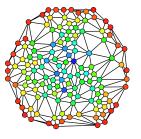
Adam Blank Lecture 22 Summer 2015

CSE 332

Data Abstractions

CSE 332: Data Abstractions

Graphs 4: Minimum Spanning Trees



```
Final Dijkstra's Algorithm
```

```
1
```

```
1 dijkstra(G, source) {
      dist = new Dictionary();
      worklist = [];
      for (v : V) {
5
         if (v == source) { dist[v] = 0; }
6
                         \{ dist[v] = \infty; \}
7
         worklist.add((v, dist[v]));
8
9
10
      while (worklist.hasWork()) {
11
         v = next();
12
         for (u : v.neighbors()) {
13
            dist[u] = min(dist[u], dist[v] + w(v, u));
14
            worklist.decreaseKey(v, dist[u]);
15
      }
16
17
18
      return dist;
19 }
```

Final Dijkstra's Algorithm

```
າ
```

```
1 dijkstra(G, source) {
      dist = new Dictionary();
      worklist = [];
      for (v : V) {
         if (v == source) { dist[v] = 0; }
6
         else
                          \{ dist[v] = \infty; \}
7
         worklist.add((v, dist[v]));
10
      while (worklist.hasWork()) {
11
         v = next();
12
         for (u : v.neighbors()) {
             dist[u] = min(dist[u], \frac{dist[v]}{dist[v]} + w(v, u));
13
14
             worklist.decreaseKey(v, dist[u]);
15
16
17
18
      return dist;
19 }
```

What Does Dijkstra's Algorithm Do Now?

Minimum Spanning Trees

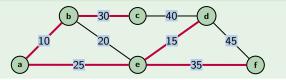
3

Definition (Minimum Spanning Tree)

Given a graph G = (V, E), find a **subgraph** G' = (V', E') such that

- \blacksquare G' is a tree.
- V = V' (G' is spanning.)
- $\sum_{e \in E'} w(e) \text{ is minimized.}$

Example



What For?

Л

- Given a layout of houses, where should we place the phone lines to minimize cost?
- How can we design circuits to minimize the amount of wire?
- Implementing efficient multiple constant multiplications
- Minimizing the number of packets transmitted across a network
- Machine learning (e.g., real-time face verification)
- Graphics (e.g., image segmentation)

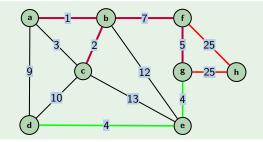
MST Example

E

20 }

MST Example

- Find a Minimum Spanning Tree of this graph
- Are there any others?
- Come up with a simple algorithm to find MSTs



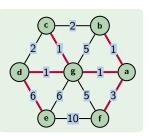
MST Uniqueness

If a graph has all unique edges, there is a unique MST. Otherwise, there might be multiple MSTs.

Back To Dijkstra's Prim's Algorithm

6

```
1 prim(G) {
      conns = new Dictionary();
      worklist = [];
      for (v : V) {
5
         conns[v] = null;
6
         worklist.add((v, \infty));
7
      while (worklist.hasWork()) {
9
         v = next();
         for (u : v.neighbors()) {
10
11
            if (w(v, u) < w(conns[u], u)) {
12
               conns[u] = v;
13
               worklist.decreaseKey(
14
                  v, w(v, u)
15
               );
16
17
18
19
      return conns;
```



This really is almost identical to Dijkstra's Algorithm! We build up an MST by **adding vertices** to a "done set" and keeping track of what edge got us there.

Do we have to use vertices? Can we use edges instead?

A Simple Algorithm to Find MSTs

7

```
Simple MST
1 findMST(G) {
      mst = \{\}:
      for ((v, w) \in sorted(E)) {
         foundV = foundW = false;
          for ((a, b) ∈ mst) {
             foundV |= (a == v) || (b == v);
             foundW \mid= (a == w) \mid | (b == w);
         if (!foundW || !foundW) {
             mst.add((v, w));
10
11
12
13
       return mst;
14 }
```

Some Questions!

- How many edges is the MST? Every MST will have |V|-1 edges; one edge to include each vertex
- What is the runtime of this algorithm? $\mathcal{O}(|E|\lg(|E|) + |E||V|)$, because sorting takes $\mathcal{O}(|E|\lg(|E|))$, the MST has at worst $\mathcal{O}(|V|)$ edges, and we have to iterate through the MST |E| times.
- What is the slow operation of this algorithm? Checking if a vertex is already in our MST is very slow here. Can we do better?

Disjoint Sets ADT

8

A disjoint sets data structure keeps track of multiple sets which do not share any elements. Here's the ADT:

UnionFind ADT

find(x)	Returns a number representing the set that \mathbf{x} is in.
union(x, y)	Updates the sets so whatever sets x and y were in are now considered the same sets.

Example

```
1 list = [1, 2, 3, 4, 5, 6];
2 UF uf = new UF(list); // State: {1}, {2}, {3}, {4}, {5}, {6}
3 uf.find(1);
                         // Returns 1
4 uf.find(2);
                         // Returns 2
 5 uf.union(1, 2);
                         // State: {1, 2}, {3}, {4}, {5}, {6}
6 uf.find(1);
                         // Returns 1
7 uf.find(2);
                         // Returns 1
8 uf.union(3, 5);
                         // State: {1, 2}, {3, 5}, {4}, {6}
9 uf.union(1, 3);
                         // State: {1, 2, 3, 5}, {4}, {6}
10 uf.find(3);
                         // Returns 1
11 uf.find(6);
                         // Returns 6
```

Kruskal's Algorithm

O

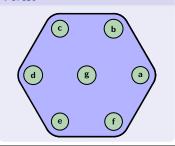
```
Simple MST

kruskal(G) {
    mst = {};
    forest = new UnionFind(V);

for ((v, w) ∈ sorted(E)) {
    if (forest.find(v) != forest.find(w)) {
        mst.add((v, w));
        forest.union(v, w);
    }
}
return mst;
}
```

Graph

Forest



c 15 b 2 X 1 1 a 7 6 4 10

Kruskal's Algorithm Correctness

10

Proving Correctness

To prove that Kruskal's Algorithm is correct, we must prove:

- The output is some spanning tree **The output is some spanning**
- 2 The output has minimum weight

Kruskal's Algorithm Outputs **SOME** Spanning Tree

We must show that the output, G' is spanning, connected, and acyclic.

- The algorithm adds an edge whenever one of its ends is not already in the tree. This means that every vertex has an edge in the tree.
- It's acyclic because we check before adding an edge.
- Connected?
 - \blacksquare The original graph is connected; there exists a path between u and v
 - Consider the first edge that we look at which is on some path between u and v.
 - Since we haven't previously considered **any** edge on **any** path between *u* and *v*, it must be the case that *u* and *v* are in distinct sets in the disjoint sets data structure. So, we add that edge.

Since there is a path between every u and v in the graph in G', G' is connected by definition

Kruskal's Algorithm Correctness

11

13

Kruskal's Algorithm Correctness

So far, we know...

hypothesis)

12

Proving Correctness

To prove that Kruskal's Algorithm is correct, we must prove:

- 1 The output is some spanning tree
- 2 The output has minimum weight

So, now, we know that G' is a spanning tree!

Kruskal's Algorithm Outputs Some MINIMUM Spanning Tree

Let the edges we add to G' be, in order, $e_1, e_2, \dots e_k$.

Claim: For all $0 \le i \le k$, $\{e_1, e_2, \dots e_i\} \subseteq T_i$ for some MST T_i .

Proof: We go by induction.

Base Case. $\varnothing \subseteq G$ for every graph G.

Induction Hypothesis. Suppose the claim is true for iteration *i*.

Induction Step. By our IH, we know that $\{e_1, \ldots, e_i\} \subseteq T_i$, where T_i is some MST of G.

We consider two cases:

- If $e_{i+1} \in T_i$, then we choose $T_{i+1} = T_i$, and we're done.
- Otherwise...

■ $e_{i+1} \notin T_i$. (handled that case) Kruskal's Algorithm Outputs Some **MINIMUM** Spanning Tree (cont.)

■ that $\{e_1, \ldots, e_i\} \subseteq T_i$, where T_i is some MST of G. (induction

Claim: For all $0 \le i \le k$, $\{e_1, e_2, \dots e_i\} \subseteq T_i$ for some MST T_i .

- Since T is a spanning tree, it must have some other edge (call it e') which was added in place of e_{i+1} .
- It follows that $T_i + e_{i+1}$ must have a cycle!

 \blacksquare T_i is a spanning tree of G. (earlier proof)

- Note that $w(T e' + e_{i+1}) = w(T) w(e') + w(e)$.
- Since we considered e_{i+1} before e', and the edges were sorted by weight, we know $w(e) \le w(e') \iff w(e) w(e') \le 0$.
- So,

$$w(T-e'+e_{i+1}) = w(T)-w(e')+w(e) \le w(T)$$

This means that $T - e' + e_{i+1}$ has no more than the weight of any MST!

Almost There...

So far, we know...

- T_i is a spanning tree of G. (earlier proof)
- that $\{e_1, \dots, e_i\} \subseteq T_i$, where T_i is some MST of G. (induction hypothesis)
- $e_{i+1} \notin T_i$. (handled that case)
- $w(T-e'+e_{i+1}) \leq w(T)$

Kruskal's Algorithm Outputs Some **MINIMUM** Spanning Tree (cont.)

Claim: For all $0 \le i \le k$, $\{e_1, e_2, \dots e_i\} \subseteq T_i$ for **some** MST T_i . Finally, choose $T_{i+1} = T - e' + e_{i+1}$.

- We already know it has the weight of an MST.
- Note that e connects the same nodes as e'; so, it's also a spanning tree.

That's it! For each i, we found an MST that extends the previous one. So, the last one must also be an MST!

Kruskal's Algorithm Runtime

14

- Sort takes $\mathcal{O}(n \lg n)$
- We don't know how UnionFind works, but if we know...
 - find is $\mathcal{O}(\lg n)$
 - union takes $\mathcal{O}(1)$ time

The runtime is $\mathcal{O}(|E|\lg(|E|) + |E|\lg(|V|))$

Due to time constraints, we won't explore how union-find works, but you can do some very interesting amortized analysis with it...