

Data Abstractions

Welcome to CSE 332!

Outline

1 Administrivia

2 A Data Structures Problem

3 Review of Stacks \& Queues

Course Material

- "Classic" Data Structures/Algorithms
- Rigorously analyze efficiency
- When to use each type of data structure
- Sorting
- Dictionary ADT
- Parallelism and Concurrency
- ...

CSE 143 vs. CSE 332

- Client of Priority Queue vs. Implementor of Priority Queue
- Linked Lists vs. Graphs
- BST vs. Balanced BST
- Merge Sort vs. Advanced Sorting
- X vs. Parallelism

During the course, we will. . .

- Implement many different data structures
- Discuss trade-offs between them
- Rigorously analyze the algorithms that use them (math!)
- Be able to pick "the right one for the job"
- Experience the purposes and headaches of multithreading

After the course, you will be able to...

- make good design choices as a developer, project manager, or system customer
- justify and communicate your design decisions

This is the course where you stop thinking like a "Java Programmer" and start thinking like a Computer Scientist!

Support and Asking for Help

Resources
- Section every week!
■ Lots of office hours!
- Piazza!

Asking for help is not a sign of weakness; it's a sign of strength.

Course Website
http://cs.uw.edu/332

Grading

- 25% programming projects, 25% theory write-ups, 20% midterm, 30\% final
- 3 "free late days"; -10% for subsequent days late; up to 2 days late on each hw

Textbook
Data Structures and Algorithm Analysis in Java (3rd edition) by Weiss

Do what helps you most.

And We're Off!

Choose a data structure and algorithms to solve the following problem:

Prefix Sums

Input: An array arr of size n.
Methods:

- arr. sum(i) should return $\sum_{k=0}^{i} \operatorname{arr}[\mathrm{k}]$
- arr.update(i, value) should update the value of the array at index i with value.
Then, analyze how good your solution is.
Naïve Implementation
Structure: The input array.
arr.sum(i): Loop from 0 to i adding up the elements.
arr.update(i, value): Update index i with value.
How good is it? sum is $\mathcal{O}(n)$; update is $\mathcal{O}(1)$.
Suppose we know update is going to happen very rarely but sum will happen a lot. Can we do better?

A Little More Clever

Prefix Sums

Input: An array arr of size n.
Methods:

- arr. sum (i) should return $\sum_{k=0}^{i} \operatorname{arr}[\mathrm{k}]$
- arr.update(i, value) should update the value of the array at index i with value.

Then, analyze how good your solution is.

Another Try (?)

Structure: An array, partials of partial sums (e.g. [3, 1, 9] \rightarrow [3, 4, 13]) arr.sum(i): Return partials[i]. arr.update(\mathbf{i}, value): Update every index from i to the end by adding the difference between old and new.

How good is it? sum is $\mathcal{O}(1)$; update is $\mathcal{O}(n)$.

Which is better?

First Solution

- sum is $\mathcal{O}(n)$
- update is $\mathcal{O}(1)$

Second Solution

- sum is $\mathcal{O}(1)$
- update is $\mathcal{O}(n)$

This is a design trade-off!

The answer is sometimes the left and sometimes the right.
The left is better when. . .

- sum is rare; update is frequent
- We aren't allowed to change the data structure (or we're not allowed extra space).

The right is better when. . .

- sum is frequent; update is rare
- We're more concerned with the time complexity of sum than our space efficiency

Consider the following input array:

$\operatorname{arr}:$| 3 | 6 | 2 | 7 | 1 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{arr}[0]$ | $\operatorname{arr}[[1]$ | $\operatorname{arr}[2]$ | $\operatorname{arr}[3]$ | $\operatorname{arr}[4]$ | $\operatorname{arr}[5]$ |

Let's get fancy now. Consider the following split of the array:

Consider the following input array:

$\operatorname{arr}:$| 3 | 6 | 2 | 7 | 1 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{arr}[0]$ | $\operatorname{arr}[1]$ | $\operatorname{arr}[2]$ | $\operatorname{arr}[3]$ | $\operatorname{arr}[4]$ | $\operatorname{arr}[5]$ |

Let's build up a tree that stores partial sums in each node. Start at the leaves:

Consider the following input array:

$\operatorname{arr}:$| 3 | 6 | 2 | 7 | 1 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{arr}[0]$ | $\operatorname{arr}[1]$ | $\operatorname{arr}[2]$ | $\operatorname{arr}[3]$ | $\operatorname{arr}[4]$ | $\operatorname{arr}[5]$ |

Let's build up a tree that stores partial sums in each node. Now go one level up:

Consider the following input array:

$\operatorname{arr}:$| 3 | 6 | 2 | 7 | 1 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{arr}[0]$ | $\operatorname{arr}[1]$ | $\operatorname{arr}[2]$ | $\operatorname{arr}[3]$ | $\operatorname{arr}[4]$ | $\operatorname{arr}[5]$ |

Let's build up a tree that stores partial sums in each node. And another. . .

Consider the following input array:

And finally, we get:

Let's use THIS as our data structure.
(For reference, this data structure is called a Segment Tree.)

Consider the following input array:

$\operatorname{arr}:$| 3 | 6 | 2 | 7 | 1 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\operatorname{arr}[0]$ | $\operatorname{arr}[[]$ | $\operatorname{arr}[2]$ | $\operatorname{arr}[3]$ | $\operatorname{arr}[4]$ |
| $\operatorname{arrr}[5]$ | | | | | |

How Do We Write update?
Walk up the tree from the leaf node that represents the index we're updating. Change each node accordingly.

What is the complexity of update?
It's $\mathcal{O}(\log n)$, because the tree is balanced.

EVEN BETTER

How Do We Write sum(i)?

```
sum(i) = sum(i, root);
sum(i, node) {
    if (node.range is completely outside (0, i)) {
        return 0;
    }
    else if ((0, i) is contained in node.range) {
        return sum(i, node.left) + sum(i, node.right);
    }
    else {
        return node.value;
    }
See above for sum(4).
```

This is $\mathcal{O}(\log n)$, btw.

While trying to solve this problem, we did the following things:

- Considered an algorithmic problem and attempted to solve it
- Chose data structures and algorithms to solve the problem (duh...)
- Analyzed code for runtime
- Considered trade-offs between different implementations
- Learned a new data structure which helped us solve the problem much better than before
- Ran into analyzing a recursive runtime

One thing we didn't consider (but that we will later!) was how to solve the problem if we had multiple processors.

This course is about learning fundamental data structures and algorithms to help you solve Computer Science problems.

Excited yet? Okay. . . what if I told you this is an interview question?

Data Structures \& Abstract Data Types

Definition (Abstract Data Type [ADT])

An Abstract Data Type is a mathematical model of the properties necessary for a data structure to be a particular data type. To put it another way, an ADT specifies what a data type is and the valid operations on it.

Definition (Data Structure)
A Data Structure is a particular implementation of an ADT.

ADT	Data Structure	Implementation
Stack	ArrayList	java.util.Stack
Stack	LinkedList	-
Queue	LinkedList	java.util.LinkedList

Stacks \& Queues

Queue ADT

enqueue(val)	Adds val to the queue.
dequeue()	Returns the least-recent item not already returned by a dequeue. (Errors if empty.)
peek()	Returns the least-recent item not already returned by a dequeue. (Errors if empty.)
isEmpty ()	Returns true if all inserted elements have been returned by a dequeue.

Stack ADT

push(val)	Adds val to the stack.
pop()	Returns the most-recent item not already returned by a pop. (Errors if empty.)
peek()	Returns the most-recent item not already returned by a pop. (Errors if empty.)
isEmpty()	Returns true if all inserted elements have been returned by a pop.

Queue Examples

$$
\begin{aligned}
& \leftarrow \begin{array}{|l|l|l|l|l}
\hline 7 & -2 & 4 & 2 & 3 \\
\hline
\end{array} \leftarrow \xrightarrow{\frac{\text { dequeue () }}{=}} \\
& \leftarrow \begin{array}{|l|l|l|l|}
\hline-2 & 4 & 2 & 3 \\
\hline
\end{array} \leftarrow \\
& \text { enqueue (9) } \\
& \leftarrow \begin{array}{|l|l|l|l|l|}
\hline-2 & 4 & 2 & 3 & 9 \\
\hline
\end{array}
\end{aligned}
$$

Stack Examples

$\downarrow \uparrow$	$\xrightarrow{\text { pop() }}$		$\xrightarrow{\text { push (9) }}$	$\downarrow \uparrow$
7		$\downarrow \uparrow$		9
-2		-2		-2
4	$\}$	4		4
2	7	2		2
3		3		3

ADTs are used to COMMUNICATE ideas more easily!

Parentheses Matching

Given a string of parentheses (i.e. (,), [,]), figure out if the parentheses are matched.

WORST: A particular implementation in a particular language using the wrong ADT

```
for (int i = 0; i < str.length(); i++) {
    if (str.charAt(i) == '(' || str.charAt(i) == '[') {
        list.add(str.charAt(i));
    }
    else if ((str.charAt(i) == ')' && list.get(list.length() - 1) == '(') ||
        (str.charAt(i) == ']' && list.get(list.length() - 1) == '[')) {
        list.remove(list.length() - 1);
    }
    else {
        throw new Exception();
    }
}
```


ADTs are used to COMMUNICATE ideas more easily!

Parentheses Matching

Given a string of parentheses (i.e. (,), [,]), figure out if the parentheses are matched.

REALLY BAD: A particular implementation, in a particular language

```
for (int i = 0; i < str.length(); i++) {
```

 if (str.charAt(i) == '(' || str.charAt(i) == '[') \{
 stack. push(str.charAt(i));
 \}
 else if ((str.charAt(i) == ')' \&\& stack.peek() == '(') ||
 (str.charAt(i) == ']' \&\& stack.peek() == '[')) \{
 stack.pop();
 \}
 else \{
 throw new Exception();
 \}
 \}

ADTs are used to COMMUNICATE ideas more easily!

Parentheses Matching

Given a string of parentheses (i.e. (,), [,]), figure out if the parentheses are matched.

BETTER: Pseudo-code using the right ADT

```
for (index in str) {
    if (str[index] is open) {
        put it on the stack
    }
    else if (str[index] is top of stack and it matches the top element) {
        pop the top element off the stack
    }
    else {
        throw error
    }
}
```

BEST: High-level description using the right ADT
To match parentheses, loop through the string pushing open parens onto the stack. When we see a close paren, make sure it matches and pop it off.

Queue Implementations

We can implement the Queue ADT using multiple ideas:

- Linked List Queue Data Structure

Empty queue?

- Time complexities?

```
Data Structure
enqueue(x) {
    back.next = new Node(x);
    back = back.next;
}
dequeue() {
    x = front.item;
    front = front.next;
    return x;
}
```

- Circular Array Queue Data Structure

Empty queue?

- Time complexities?
Data Structure
enqueue(x) \{
Q [back] $=\mathrm{x}$;
back $=($ back +1$) \%$ size;
\}
dequeue() \{
$x=Q[$ front $] ;$
front $=($ front +1$) \%$ size;
return x;

Trade-Offs?

	LinkedList Queue	CircularArray Queue
Space (in queue)?	No wasted space	Extra (or too little?)
Space (per element)?	Larger	Smaller
Operation Times?	Fast	Fast
Other Concerns?	Never runs out of space	Can run out of space

Question: Why would we ever use a circular array queue?

Answer:

In practice, creating new Nodes can fail! Memory allocation can be expensive.

Today's Takeaways!

- Hopefully you're excited!

What is an ADT? What is a Data Structure?

- Understand Stack and Queue ADTs
- Understand Queue implementations

