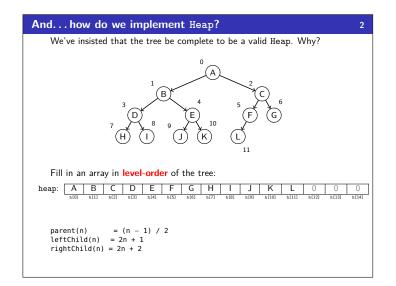
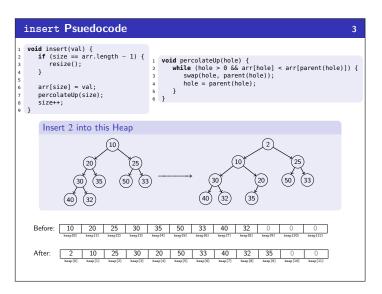
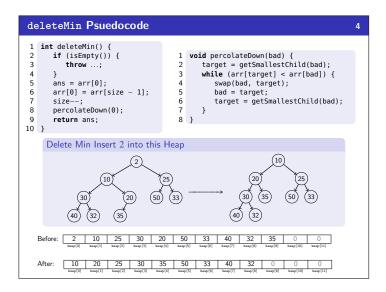
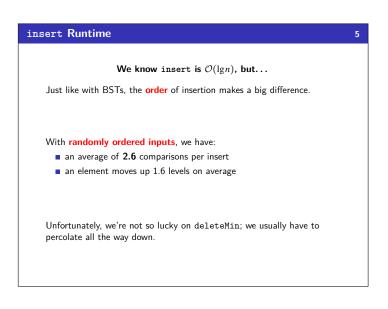


A New Data Structure: Heap					
	PriorityQueue	ADT			
	insert(val)	Adds val to the queue.			
	deleteMin()	Returns the highest priority item not already returned by a deleteMin. (Errors if empty.)			
	findMin()	Returns the highest priority item not already returned by a deleteMin. (Errors if empty.)			
	isEmpty()	Returns true if all inserted elements have been returned by a deleteMin.			
	Heaps give us ${\mathcal C}$	$\mathcal{O}(\lg n)$ insert and deleteMin:			
	And Now, Heaps	5			
	4 5 6 8	Total Heap Property: 10 9 Heap Property: All Children are larger Structure Property: Insist the tree has no "gaps"			









Analyzing insert's Ave

Suppose a heap has n nodes.

- How many nodes on the bottom level? $\frac{n}{2}$
- And the level above? $\frac{n}{4}$
- etc.

Suppose we have a random value, x, in the heap.

- How often is x in the bottom level? $\frac{1}{2}$ of the time
- And the level above? $\frac{1}{4}$ of the time
- etc.

So, putting these things together, we see that for a random value x, there's a $\frac{1}{2}$ probability we don't percolate at all, a $\frac{1}{4}$ probability we percolate once, etc.

Taking a weighted average (expected value) gives us:

Average # of Swaps
$$< \frac{1}{2} + \frac{1}{4} + \dots = \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i = 2$$

This is $\mathcal{O}(1)!$

Changing the ADT...

What else can we do with a heap?

Given a particular index i into the array...

- decreaseKey(i, newPriority): Change priority, percolate up
- increaseKey(i, newPriority): Change priority, percolate down
- remove(i): Call decreaseKey(i, ∞), then deleteMin

What are the running times of these operations?

They're all worst case $\mathcal{O}(\lg n)$, but decreaseKey is average $\mathcal{O}(1)$.

Evaluating the Array Implementation

Advantages

6

8

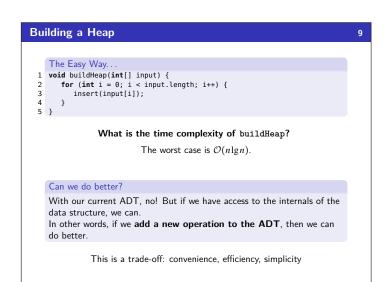
Minimal amount of wasted space:

- Only unused space on right in the array
- No "holes" due to complete tree property
- No wasted space representing tree edges
- Fast lookups:
- Benefit of array lookup speed
- Multiplying and dividing by 2 is extremely fast (can be done through
- bit shifting (see CSE 351)Last used position is easily found by using size 1 for the index

Disadvantages

What if the array gets too full (or wastes space by being too empty)? Array will have to be resized.

Advantages outweigh Disadvantages: This is how it is done!



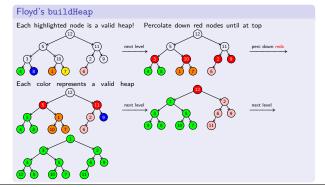
Building a Heap, Take 2

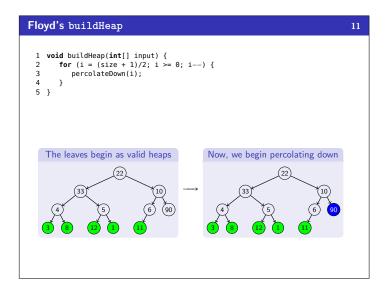
Floyd's buildHeap Idea

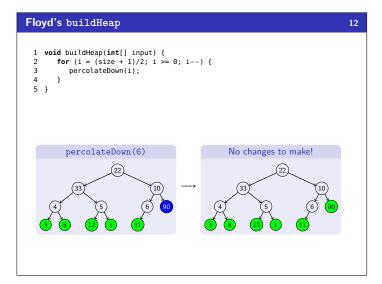
Our previous attempt added a node, then fixed the heap, then added a node, then fixed the heap, etc.

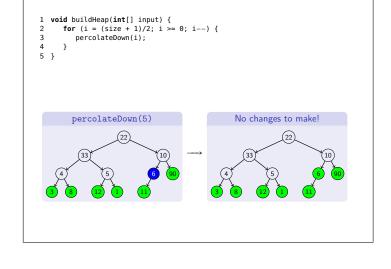
10

What if we added all the nodes and then fixed the heap all at once!



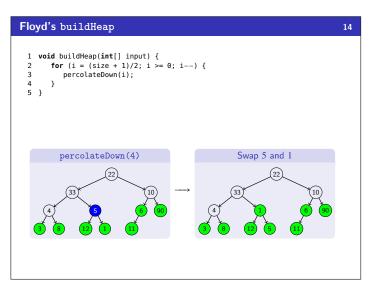


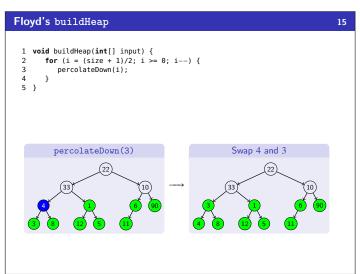


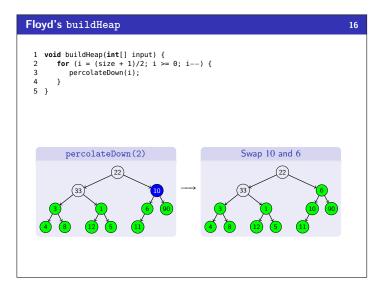


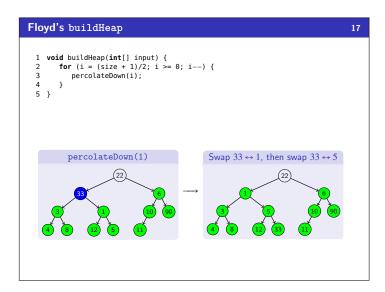
13

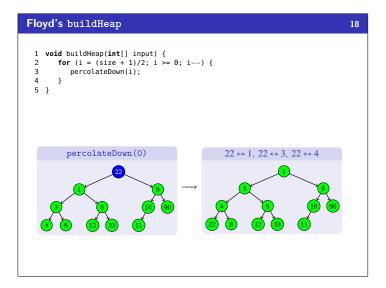
Floyd's buildHeap





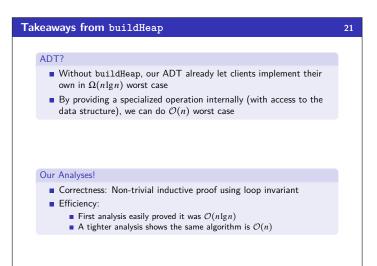






Efficiency of Floyd's buildHeap			
1 2 3 4 5	<pre>void buildHeap(int[] input) { for (i = (size + 1)/2; i >= 0; i) { percolateDown(i); } }</pre>		
	Was this even worth the effort?		
	The loop runs $n/2$ iterations and each one is $\mathcal{O}(\lg n);$ so, the algorithm is $\mathcal{O}(n\lg n).$		
	This is certainly true, but it's not $\Omega(n \lg n) \dots$		
	A Tighter Analysis		
	\blacksquare On the second lowest level there are $\frac{n}{2^1}$ elements and each one can percolate $\mathbf{at}\ \mathbf{most}\ 1$ time		
	On the third lowest level there are $\frac{n}{2^2}$ elements and each one can percolate at most 2 times		
	Putting this together, the largest possible number of swaps is : $\sum_{i=1}^{k} \frac{ni}{2^{i}} < n \sum_{i=1}^{\infty} \frac{i}{2^{i}} = n(2-1) = n$		

Correctness of Floyd's buildHeap	19
<pre>1 void buildHeap(int[] input) { 2 for (i = (size + 1)/2; i >= 0; i) { 3 percolateDown(i); 4 } 5 }</pre>	
The algorithm seems to work. Let's prove it : To prove that it works, we'll prove the following:	
Before loop iteration i , all arr[j] where $j > i$ have the heap property	
Formally, we'd do this by induction. Here's a sketch of the proof:	
Base Case: All $j > (size + 1) / 2$ have no children.	
Induction Step:	
We know that percolateDown preserves the heap property and makes its argument also have the heap property. So, after the $(i+1)$ st iteration, we know <i>i</i> is less than all its children and by the IH, we know that all of the children past arr[i] already had the heap property (and percolateDown didn't break it).	
So, since the loop ends with index 0, once we're done all the elements of the array will have the heap property.	



Other Types of Heaps?

22

More Complicated Heaps

- Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)
- Different data structures for priority queues that support a logarithmic time merge operation (impossible with binary heaps)
- Intuition: We already saw merge for the amortized array dictionary
- insert & deleteMin defined in terms of merge

d-heaps

We can have heaps with d children instead of just 2 (see Weiss 6.5)

- Makes heaps shallower, useful for heaps too big for memory
- How does this affect the asymptotic run-time (for small *d*'s)?