143

Hashing: Part I

Computer Programming II

■ Use any of the dictionaries we've already learned! This gets us $\mathcal{O}(\lg n)$ behavior for each of the operations.

void add(int value)
\{ this.data[value] = true; \} void remove(int value) $\quad \begin{cases}\text { this.data[value] }=\text { false; }\}\end{cases}$

- BitSet: Stores one or more ints and uses the i th bit to represent the number i.
$(1234)_{10}=(00000000000000000000010011010010)_{2}=\{1,4,6,7,10\}$

$$
\begin{array}{ll}
\text { void add(int value) } & \{\text { this.set } \mid=1 \ll \text { value; \}} \\
\text { boolean contains(int value) } & \{\text { return (this.set } \gg \text { value) } \& 1 ;\} \\
\text { void remove(int value) } & \{\text { this.set } \delta=\sim(1 \ll \text { value); \}}
\end{array}
$$

Neat Fact: BitSets are often good enough in practice!

BoundedSets Only Allow Integer Keys!
If we ever want our keys to be something complicated like Strings or arbitrary Objects, our implementations of BoundedSet aren't going to work. Notice that chars are fine though!

BoundedSets Are Very Bad For Certain Operations!

- Given an input file with four billion integers, determine the the number of unique integers in the file.
A B-Tree will work better here. In a BitSet, to get the size, we need to loop over the entire key space. In a tree, it's stored upon insertion.
- Store a set of prime numbers with easy access to "previous" and "next". The right choice here will be a tree (probably an AVL tree). None of our other data structures give us a useful way of getting "previous" or "next".
- Give a sorted list of Student IDs in the course.

We already figured out we can't use a BitSet for this one. A HashTable will end up being really bad too. A bit downside to HashTables is that they provide no guarantee about ordering!
Putting it all together: Although BoundedSet (and HashTable) are basically the same ADT, they sacrifice operations related to ordering (printSorted, findMin, findMax, pred, succ) for better runtime on the core operations.

Putting all these observations together, we see the following:

- Use a Tree if we care about the ordering of the data.
- Use a BitSet if we have int keys and the data is not sparse.
- Use a HashTable if the key space is much larger than the number of expected items or we need non-integer keys

Hash Tables

- Provides $\mathcal{O}(1)$ core Dictionary operations (on average)
- We call the key space the "universe": U and the Hash Table T

■ We should use this data structure only when we expect $|U| \gg|T|$

- (Or, the key space is non-integer values.)

These Requirements Are Really Common!

- Compilers: all possible variables vs. defined ones

■ Databases: student names vs. actual students

- ...

Fixing Sparseness

Course Roster

Store a set of students in a course by their Student ID Number.
If we use a BoundedSet, we will need $1,000,000$ bytes which is severe overkill for a 20 person class. The solution is to choose a mapping from $U \rightarrow T$. The traditional choice is to mod by the table size:

$$
\operatorname{keyToIndex}(k)=k \bmod |T|
$$

Let's look at a few examples:

$$
\begin{aligned}
& U=\{0,1, \ldots, 1000\},|T|=10 \\
& \text { Insert: } 7,18,41,34,10 \\
& \begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline 10 & 41 & & 34 & & & & & & \\
\hline & T[0] & & T[1] & T[2] & T[3] & T[4] & T[5] & & T[6] \\
& 7[7] & T[8] & T[9]
\end{array}
\end{aligned}
$$

$U=\{0,1, \ldots, 1000\},|T|=10$
Insert: 20,40,60,80, 100

Non-Integer Keys

Course Roster

Store a set of students in a course by their UWNetID.
We need to find a way to map from $U \rightarrow$ int. This idea is called a hash function.

Hash Function

A hash function is a mapping from the key set (U) to int. Ideally, whatever function we use would have the following properties:

- Uniform Distribution of Outputs: There are $2^{32} 32$-bit ints; so, the probability that the hash function maps to any individual output should be $\frac{1}{2^{32}}$.
- Low Computational Cost: We will be computing the hash function a lot; so, we need it to be very easy to compute.

So, what do hash functions look like in practice?

Game Plan

To get from BoundedSets to HashTables, we need to make several generalizations/fixes:

- Avoid sparseness of the table

Solution: Map multiple keys to the same table location

- Allow non-integer keys

Solution: Provide a mapping from Type $\rightarrow \mathbb{N}$.)

- Deal with "collisions"

What do we do when two keys are in the same location?

We will handle these one at a time.

Fixing Sparseness: PRIMES!

Our last example showed us that we can get really bad behavior with this technique. What happened? Why was that so bad?

The more factors the table size has, the worse the distribution
In general, if x and y are co-prime:

$$
a x \equiv b x(\bmod y) \text { iff } a \equiv b(\bmod y)
$$

Technique: Choose $|T|$ to always be prime

- Real-life data has patterns
- The pattern is unlikely to follow a prime sequence
- Some collision strategies only work well with prime table sizes

Investigating Table Size
Consider $|T|=60$. Note that $60=2^{2} \times 3 \times 5$. Consider the following insertion sequences:
$5,10,15,20, \ldots$
$10,20,30, \ldots$
$2,4,6,8, \ldots$

All of these waste significant amounts of the table!
What if we have $|T|=61$ instead? These "more likely patterns" won't waste the table.

Hashing Non-ints

Here's some ideas for hash functions for Strings:

- $h\left(s_{0} s_{1} \cdots s_{m-1}\right)=1$

This hash function is very fast, but it maps everything to the same index.

- $h\left(s_{0} s_{1} \cdots s_{m-1}\right)=\sum_{i=0}^{m-1} s_{i}$

This hash function ignores crucial information aout the string: the positions of the characters.

- $h\left(s_{0} s_{1} \cdots s_{m-1}\right)=2^{s_{0}} 3^{s_{1}} 5^{s_{2}} 7^{s_{3}} 11^{s_{4}} \ldots$

This hash function maps every string to a unique number, but it's difficult to compute.

- $h\left(s_{0} s_{1} \cdots s_{m-1}\right)=\sum_{i=0}^{m-1} 37^{i} s_{i}$

This hash function is a nice compromise. It does have collisions, but all information about the String is used.

A Few Tricks

- Use all 32 bits (careful, that includes negative numbers)
- Use different overlapping bits for different parts of the hash (This is why a factor of 37^{i} works better than 256^{i})
■ When smashing two hashes into one hash, use bitwise-xor
- Rely on expertise of others; consult books and other resources

■ If keys are known ahead of time, choose a perfect hash

Hashing a Person Object

class Person \{
String first; String middle; String last;
Date birthdate;
\}

- An inherent trade-off: hashing-time vs. collision-avoidance
- Use all the fields?

Client Responsibilities

- The client is responsible for choosing a "good" hash function (fast \& spreads out outputs)
■ The client should avoid "wasting" any part of E or the bits of the int

Library Responsibilities

- The library is responsible for mapping the integer to a table index
- The library is responsible for choosing the table size
- The library is responsible for keeping track of collisions

Separate Chaining

Idea

If we hash multiple items to the same location, store a LinkedList of them.

Example (Insert: 10,22, 107, 12,42)

What is the worst case time for find?
Well, if the hash function were $h(k)=c$, then we'd get a linked list of size n in one bucket. So, it's $\mathcal{O}(n)$.

Load Factor

Definition (Load Factor (λ))
The load factor of a hash table is a measure of "how full" it is. We define it as follows:

$$
\lambda=\frac{N}{|T|}
$$

If we're using separate chaining, the average number of elements per bucket is λ.

If we do inserts followed by random finds.

- Each unsuccessful find compares against λ items
- Each successful find compares against $\lambda / 2$ items

Load Factor Examples
Example (What is the Load Factor?)

What is λ for this hash table? $\lambda=\frac{N}{|T|}=\frac{5}{10}=0.5$
Example (What is the Load Factor?)

What is λ for this hash table? $\lambda=\frac{N}{|T|}=\frac{21}{10}=2.1$

The algorithm for delete is just the reverse of insert. We remove it from the linked list:

Just like insert, the worst case runtime is $\mathcal{O}(n)$, but average is $\mathcal{O}(1)$.

