CSE

Data Abstractions

Let's extend our terminology for directed graphs!

Graphs 2: Representing Graphs Topological Sort

Let's extend our terminology for directed graphs!

A Lonely Graph

(d)

Some Questions

■ How many edges can a directed graph with $|V|=n$ have?

- How many edges can a directed graph with $|V|=n$ and possible loops have?

A Lonely Graph

(b)

Complete Directed Graph

Some Questions

- How many edges can a directed graph with $|V|=n$ have?

$$
|E|=n(n-1)
$$

- How many edges can a directed graph with $|V|=n$ and possible loops have?

New Terminology: Degree

Definition (Degree)

The degree of a vertex in a graph is the number of vertices adjacent to it. In the above graph, we have:

a	b	c	d	e	f	g	h

Definition (Degree)

The degree of a vertex in a graph is the number of vertices adjacent to it. In the above graph, we have:

a	b	c	d	e	f	g	h
3	2	3	2	3	1	1	1

Definition (In \& Out Degree)

The in-degree of a vertex, v, in a graph is $|\{(x, v) \mid(x, v) \in E, x \in V\}|$. The out-degree of a vertex, v, in a graph is $|\{(v, x) \mid(x, v) \in E, x \in V\}|$.

\[

\]

Burgers? Now?

Definition (In \& Out Degree)

The in-degree of a vertex, v, in a graph is $|\{(x, v) \mid(x, v) \in E, x \in V\}|$. The out-degree of a vertex, v, in a graph is $|\{(v, x) \mid(x, v) \in E, x \in V\}|$.

	a	b	c	d	e	f	g	h
In-Degree	1	1	2	1	0	1	1	0
Out-Degree								

Burgers? Now?

Definition (In \& Out Degree)

The in-degree of a vertex, v, in a graph is $|\{(x, v) \mid(x, v) \in E, x \in V\}|$. The out-degree of a vertex, v, in a graph is $|\{(v, x) \mid(x, v) \in E, x \in V\}|$.

Paths?

Cycle

Graph Data Structures

Adjacency List
$a: b \longrightarrow c \longrightarrow$
$\mathrm{b}: \mathrm{a} \rightarrow \mathrm{c} \longrightarrow$
c: $a \longrightarrow b \longrightarrow d \longrightarrow$
$d: c \longrightarrow$

Definition (Strongly Connected Directed Graph)

We say a directed graph is strongly connected iff for every pair of vertices, $u, v \in V$, there is a path from u to v.

Strongly Connected!

Not Strongly Connected!

Definition (Weakly Connected Directed Graph)
We say a directed graph is weakly connected iff the underlying undirected graph is connected.

That is, if we "undirected the edges", if the graph is connected, then the digraph is weakly connected.

Adjacency Matrix Analysis

Adjacency Matrix				
	a	b	C	d
a	0	1	1	0
b	1	0	1	0
C	1	1	0	1
d	0	0	1	0

Adjacency List
$a: b \longrightarrow c \longrightarrow$
$b: a \rightarrow c \longrightarrow$
c: $a \rightarrow b \longrightarrow d \longrightarrow$
d: $\mathrm{c} \longrightarrow$

Adjacency Matrix Properties

How long to...

- Get a vertex's out-edges? $\mathcal{O}(|V|)$
- Get a vertex's in-edges? $\mathcal{O}(|V|)$
- Check if an edge exists? $\mathcal{O}(1)$
- Insert an edge? $\mathcal{O}(1)$
- Delete an edge? $\mathcal{O}(1)$

Space Requirements: $\mathcal{O}\left(|V|^{2}\right)$
Adjacency Matrices are reasonable for dense graphs, but not otherwise.

Adjacency Matrix

	a	b	c	d
a	0	1	1	0
b	1	0	1	0
c	1	1	0	1
d	0	0	1	0

Adjacency List
$a: b \longrightarrow \longrightarrow$
b: $a \longrightarrow c \longrightarrow$
$c: a \longrightarrow b \longrightarrow d \longrightarrow$
$d: \mathrm{c} \longrightarrow$

Adjacency List Properties

How long to...

- Get a vertex's out-edges? $\mathcal{O}(d)$
- Get a vertex's in-edges? $\mathcal{O}(|E|)$
- To fix this, keep a second adjacency list going the other way
- Check if an edge exists? $\mathcal{O}(d)$
- Insert an edge? $\mathcal{O}(1)$
- Delete an edge? $\mathcal{O}(d)$

Space Requirements: $\mathcal{O}(|V|+|E|)$
Adjacency Lists should be your goto choice.

Definition (DAG)

A DAG is a directed, acyclic graph.

By "acyclic", we mean in the directed sense.
DAGs vs. Trees?
Is there a tree that isn't a DAG?
Is there a DAG that isn't a tree?

Directed Acyclic Graphs: DAGs

DAGs vs. Trees?

All trees are DAGs (remember, trees must be acyclic and connected!).
Not all DAGs are trees. See previous slide. Also, DAGs don't have to be connected!

Topological Sort

Topological Sort

Given a DAG $(G=(V, E))$, output all the vertices in an order such that no vertex appears before any vertex that has an edge to it.
"Output an order to process the graph that meets all dependencies"
This is how we can allocate work in the ForkJoin model!

How Many Valid Topological Sorts?

- $T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}, T_{8}, T_{9}, T_{10}$

■ $T_{1}, T_{2}, T_{4}, T_{3}, T_{5}, T_{6}, T_{7}, T_{8}, T_{9}, T_{10}$
■ $T_{1}, T_{2}, T_{5}, T_{4}, T_{3}, T_{6}, T_{7}, T_{8}, T_{9}, T_{10}$

- $T_{1}, T_{3}, T_{6}, T_{7}, T_{9}, T_{2}, T_{5}, T_{4}, T_{8}, T_{10}$
-...

Topologically Sorting A DAG (

Implementing Topological Sort
Throw all the in-degrees in a priority queue. removeMin() repeatedly.

- This works, but it's too slow.
- Insight: PriorityQueues must deal with negative numbers; indegree will never be negative!
- Instead: Split ready vs. not ready (0 vs. non-zero) sets
- The "ready set" is a worklist!

Topologically Sorting A DAG (

```
Do Work
while (worklist.hasWork()) {
    v = worklist.next();
    for (w : neighbors(v)) {
        output.add(v);
        deps[w] -= 1
        if (deps[w] == 0) {
        worklist.add(w);
        }
    }
}
```


Setup

1 output = []
2 deps = \{\}
3 worklist = []
4 for (v: vertices) \{
deps[v] = in-degree(v);
if (deps[v] == 0) \{
worklist.add(v);
\}
9 \}
\}
worklist \leftarrow

output

worklist \leftarrow| T_{1} | T_{8} | T_{10} |
| :--- | :--- | :--- |

output

worklist \leftarrow| T_{8} | T_{10} |
| :--- | :--- |

output

Topologically Sorting A DAG (

output

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline T_{1} & T_{8} & & & & & & & & \\
\hline 0[0] 1 & 0[1] & 0^{[2]} & o^{[3]} & 0[4] & 0[5] & 0[6] & 0[7] & 0[8] & 0[9] \\
\hline
\end{array}
$$

worklist \leftarrow| T_{10} | T_{3} |
| :--- | :--- |

worklist $\leftarrow T_{3} \leftarrow$

output

Topologically Sorting A DAG (
)

output

Topologically Sorting A DAG (

)

worklist \leftarrow

output

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline T_{1} & T_{8} & T_{10} & T_{3} & T_{4} & & & & & \\
\hline
\end{array}
$$

worklist \leftarrow| T_{2} | T_{5} |
| :--- | :--- |

output

Topologically Sorting A DAG (

$$
\text { worklist } \leftarrow T_{5} \leftarrow
$$

output

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline T_{1} & T_{8} & T_{10} & T_{3} & T_{4} & T_{2} & & & & \\
\hline 0_{0[0]} & 0[1] & 0[2] & 0[3] & 0[4] & 0[5] & 0[6] & 0[7] & 0[8] & 0^{[9]} \\
\hline
\end{array}
$$

Topologically Sorting A DAG (

)

worklist

$$
\leftarrow T_{7} \leftarrow
$$

output

output

Topologically Sorting A DAG (

worklist \leftarrow

output

$$
:
$$

output

worklist $\leftarrow T_{9} \leftarrow$

output
worklist \leftarrow
output

Analyzing Topological Sort

What happens if there is a cycle?

Our worklist will be empty before we've processed all of the vertices.
(e.g., "there are no nodes ready to print next, but we haven't gone
through all of them)
In this case: our algorithm should throw a "not a DAG exception".

Runtime?

- Setup: We follow every edge for every vertex: $\mathcal{O}(|V|+|E|)$
- We add/remove each vertex from the work list once: $\mathcal{O}(|V|)$
- We decrement each indegree until zero (once for each edge): $\mathcal{O}(|E|)$
- So, overall, it's graph linear!

