Summer 2015

Data Abstractions

CSE 332: Data Abstractions

B-Trees

Outline

1 A New Model For Time Complexity
$2 M$-ary Search Trees

3 B-Trees

We've been assuming that all memory accesses are the same. In practice, this isn't true. The memory hierarchy looks something like this:

The take-away is that disk accesses are very expensive.

Why do we care how the machine works?
Big-Oh is just an abstraction that says "all memory fetches are equal". . . but in practice, some memory fetches are more equal than others. (The disk is prohibitively slow.)

AVL Trees: Big-Oh vs. Practice
We've seen that AVL Trees are $\mathcal{O}(\lg n)$ which is great, but what if we account for disk accesses?
Consider an AVL Tree of height $\mathbf{4 0}$ where each node is b bytes.

- How many nodes in the tree? $\lg n=40 \rightarrow n=2^{40}$. So, we need about b terabytes
for the tree. This means an overwhelming majority is on the disk.
- How many disk accesses does a find take? It could take none (3 nanoseconds) or it could take 40 ($\mathbf{0 . 3}$ seconds). That's a difference of: 100,000,000

If the data structure is mostly on disk, yes, we still need a data structure that is $\mathcal{O}(\lg n)$, but it's not enough anymore!

Okay. . .:

Problem

A dictionary with so much data most of it is on disk

Goal

A balanced tree (logarithmic height) that is even shallower than AVL trees so that we can minimize disk accesses and exploit disk-block size

The Idea
Increase the branching factor of our tree

M-ary Search Tree

Like a binary tree, but with M branches instead of two.

M-ary Search Tree Properties

- Height (if balanced)? $\mathcal{O}\left(\log _{M}(n)\right)$
- Ordering Property?
- Binary Tree: smaller on the left, larger on the right
- M-ary Tree: split the range into M equal sized groups
- Runtime of find (if balanced)? $\mathcal{O}(h \lg M)=\mathcal{O}\left(\log _{M}(n) \lg M\right)$
- h possible nodes to visit: $\log _{M}(n)$
- Binary Search on each node: $\lg M$

M-ary Search Tree Example?

Some Questions

- What should the order property be?
- How would re-balancing work? We DON'T want to do more disk accesses!

Some Thoughts

- We will have to load the values (e.g., fruits) for all the internal nodes. This is very wasteful!
- Usually we are just "passing through" a node on the way to the value we are actually looking for.

Two Types of Nodes

Internal Nodes

("sign posts")

An internal node has $M-1$ sorted keys and M pointers to children

Leaf Nodes

("real data")

$$
\begin{array}{|l|}
\hline \mathrm{K}, \mathrm{~V} \\
\hline \mathrm{~K}, \mathrm{~V} \\
\hline \mathrm{~K}, \mathrm{~V} \\
\hline
\end{array}
$$

A leaf node has L sorted key/value pairs

B-Tree Order Property

Subtree between a and b contains all data x where $a \leq x<b$

B-Tree Structure Property

First, choose $M>2$ and any L. (Here $M=4, L=5$.)
Very Few Nodes If $n \leq L$, the ROOT is a LEAF:
\square
Otherwise, the root must have between 2 and M children

B-Tree Example

Internal Nodes must have between $\left\lceil\frac{M}{2}\right\rceil$ and M children (ie., half full).
Leaf Nodes must have between $\left\lceil\frac{L}{2}\right\rceil$ and L children (ie., half full).

Find

Balanced Enough!

Let $M>2$. Since all nodes are at least half full (ignoring the root), we have:

$$
2\left\lceil\frac{M}{2}\right\rceil^{h-1} \text { leaves, and each leaf has at least }\left\lceil\frac{L}{2}\right\rceil \text { data items }
$$

So, $n \geq 2\left\lceil\frac{M}{2}\right\rceil^{h-1} \times\left\lceil\frac{L}{2}\right\rceil$. So, the height h is logarithmic in the number of data items n.

B-Tree Insertion (Continued)


```
insert(12), insert(40), insert(45), insert(38)
```


Always fill the "signpost" with the smallest value to my right!

Insert the data in the correct leaf in sorted order.

If the leaf has $L+1$ items, overflow:

- Split the leaf into two new nodes:
- Original leaf with $\left\lceil\frac{L+1}{2}\right\rceil$ smaller items

New leaf with $\left\lceil\frac{L}{2}\right\rceil$ larger items

- Attach the new child to the parent
- Add the new key to the parent in sorted order
- Recursively continue overflowing if necessary. Noting that on the internal nodes we split using M instead of L.
- In the case where the root overflows, make a new root.

How Efficient is Insert?

- Find the correct leaf: $\mathcal{O}\left(\lg (M) \log _{M}(n)\right)$
- Insert in the leaf: $\mathcal{O}(L)$
- Split leaf: $\mathcal{O}(L)$
- Split parents all the way up to the root: $\mathcal{O}\left(M \log _{M}(n)\right)$

In total, this gives us $\mathcal{O}\left(L+M \log _{M}(n)\right)$.

But It's Actually Pretty Good!

- Splits are very uncommon (think amortized analysis)
- Splitting the root almost never happens
- We're significantly more concerned about disk accesses than anything else: $\mathcal{O}\left(\log _{M}(n)\right)$

B-Tree Deletion

$\xrightarrow{\text { Fix Internal }}$

B-Tree Deletion (Continued)

This breaks our invariant. Leaves must have more than one node!

B-Tree Deletion (Continued)

B-Tree Deletion (Continued)

This time, we can't adopt. (We'd break another invariant.) The solution is to adopt recursively.

B-Tree Deletion (Continued)

B-Tree Deletion (Continued)

Remove the data from correct leaf.

If the leaf has $\left\lceil\frac{L}{2}\right\rceil-1$ items, underflow:
If a neighbor has more than $\left[\frac{L}{2}\right\rceil$, adopt one!

- Otherwise, merge with a neighbor (parent will now have one fewer node)
- Recursively continue underflowing if necessary. Noting that on the internal nodes we split using M instead of L.
- If we merge all the way up to the root and the root went from $2 \rightarrow 1$ children, then delete the root and make the child the root.

How Efficient is Delete?

- Find the correct leaf: $\mathcal{O}\left(\lg (M) \log _{M}(n)\right)$
- Remove from the leaf: $\mathcal{O}(L)$
- Adopt/Merge with neighbor: $\mathcal{O}(L)$
- Merge parents all the way up to the root: $\mathcal{O}\left(M \log _{M}(n)\right)$

In total, this gives us $\mathcal{O}\left(L+M \log _{M}(n)\right)$.

But It's Actually Pretty Good!

- Merges are very uncommon (think amortized analysis)
- We're significantly more concerned about disk accesses than anything else: $\mathcal{O}\left(\log _{M}(n)\right)$

Disk Friendlyness

What makes B -Trees so disk friendly?

- Many keys stored in one internal node: all brought into memory in one disk access
- Makes the binary search over M-1 keys totally worth it (insignificant compared to disk access times)
- Internal nodes contain only keys (it's a waste to load all the values)

We take advantage of the choice of M and L to ensure good behavior!

We want each of M and L to fit as best as possible in the page size.

Say we know the following:

- 1 page on disk is p bytes
- Keys are k bytes
- Pointers are t bytes
- Key/Value pairs are v bytes

Then, we should choose the following:

- $p \geq M \times($ size of a pointer $)+(M-1) \times($ size of a key $)=M t+(M-1) k$.

So, $M=\left\lfloor\frac{p+k}{t+k}\right\rfloor$.

- $p \geq L \times v$. So, $L=\left\lfloor\frac{p}{v}\right\rfloor$.

Balanced trees make good dictionaries because they guarantee logarithmic-time find, insert, and delete

- Essential and beautiful computer science
- But only if you can maintain balance within the time bound

AVL Trees maintain balance by tracking height and allowing all children to differ in height by at most 1

- B-Trees maintain balance by keeping nodes at least half full and all leaves at same height
- Other great balanced trees (see text; worth knowing they exist)
- Red-black trees: all leaves have depth within a factor of 2
- Splay trees: self-adjusting; amortized guarantee; no extra space for height information

