
Adam Blank Summer 2015Lecture 4

CSE
332

Data Abstractions



CSE 332: Data Abstractions

Amortized Analysis



Outline

1 Amortized Analysis of ArrayStack

2 Amortized Analysis of A Binary Counter

3 Amortized Analysis of A New Data Structure



Stack ADT & ArrayStack Analysis 1

Stack ADT

push(val) Adds val to the stack.
pop() Returns the most-recent item not already returned by a

pop. (Errors if empty.)
peek() Returns the most-recent item not already returned by a

pop. (Errors if empty.)
isEmpty() Returns true if all inserted elements have been returned by

a pop.

Let’s analyze the time complexity for these various methods. (You know
how they work, because you just implemented them!)

Method Time Complexity
isEmpty() Θ(1)
peek() Θ(1)
pop() Θ(1)
push(val) ??

push is actually slightly more interesting.



Analyzing push for an ArrayStack 2

Best Case

There’s more space in the underlying array! Then, it’s Ω(1).

Worst Case

If there’s no more space, we double the size of the array, and copy all the
elements. So, it’s O(n).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Insight: Our analysis seems wrong. Saying linear time feels wrong.



Analyzing push for an ArrayStack 2

Best Case
There’s more space in the underlying array! Then, it’s Ω(1).

Worst Case

If there’s no more space, we double the size of the array, and copy all the
elements. So, it’s O(n).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Insight: Our analysis seems wrong. Saying linear time feels wrong.



Analyzing push for an ArrayStack 2

Best Case
There’s more space in the underlying array! Then, it’s Ω(1).

Worst Case
If there’s no more space, we double the size of the array, and copy all the
elements. So, it’s O(n).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Insight: Our analysis seems wrong. Saying linear time feels wrong.



Analyzing push for an ArrayStack 3

This is where “amortized analysis” comes in. Sometimes, we have a very
rare expensive operation that we can “charge” to other operations.

Intuition: Rent, Tuition
You pay one big sum for a long period of time, but you can afford it
because it happens very rarely.

Back to ArrayStack

Say we have a full Stack of size n. Then, consider the next n pushes:
The next push will take O(n) (to resize the array to size 2n)
The n−1 operations after that will all be O(1), because we know we
have enough space

Considering these operations in aggregate, we have n operations that take
(c0+c1n)+(n−1)×c2 time.
So, how long does each operation take:

(c0+c1n)+(n−1)×c2

n
≤ nmax(c0,c2)+c1n

n
=max(c0,c2)+c1 =O(1)



Analyzing push for an ArrayStack 4

What happens if we change our resize rule to each of the following:
n→ n+1

This is really bad! We can only amortize over the single operation
which gives us:

n
1
=O(n)

n→ 3n
2

This still works. Now, we go over the next 3n
2 −n operations:

n+(n/2−1)×1
n
2

=O(1)

n→ 5n

This is good too:
n+(4n−1)×1

4n
=O(1)

Which is better 2n, 3n
2 , or 5n?

Java uses 3n
2 to minimized wasted space.



Analyzing push for an ArrayStack 4

What happens if we change our resize rule to each of the following:
n→ n+1
This is really bad! We can only amortize over the single operation
which gives us:

n
1
=O(n)

n→ 3n
2

This still works. Now, we go over the next 3n
2 −n operations:

n+(n/2−1)×1
n
2

=O(1)

n→ 5n

This is good too:
n+(4n−1)×1

4n
=O(1)

Which is better 2n, 3n
2 , or 5n?

Java uses 3n
2 to minimized wasted space.



Analyzing push for an ArrayStack 4

What happens if we change our resize rule to each of the following:
n→ n+1
This is really bad! We can only amortize over the single operation
which gives us:

n
1
=O(n)

n→ 3n
2

This still works. Now, we go over the next 3n
2 −n operations:

n+(n/2−1)×1
n
2

=O(1)

n→ 5n

This is good too:
n+(4n−1)×1

4n
=O(1)

Which is better 2n, 3n
2 , or 5n?

Java uses 3n
2 to minimized wasted space.



Analyzing push for an ArrayStack 4

What happens if we change our resize rule to each of the following:
n→ n+1
This is really bad! We can only amortize over the single operation
which gives us:

n
1
=O(n)

n→ 3n
2

This still works. Now, we go over the next 3n
2 −n operations:

n+(n/2−1)×1
n
2

=O(1)

n→ 5n
This is good too:
n+(4n−1)×1

4n
=O(1)

Which is better 2n, 3n
2 , or 5n?

Java uses 3n
2 to minimized wasted space.



Binary Counter 5

Time Complexity of A Binary Counter
We would like to analyze an n-bit binary counter with the single method
increment(). For example,

0000
1Ð→ 0001

2Ð→ 0010
1Ð→ 0011

3Ð→ 0100
1Ð→ 0101

2Ð→ 0110
1Ð→ 0111

4Ð→

1000
1Ð→ 1001

2Ð→ 1010
1Ð→ 1011

3Ð→ 1100
1Ð→ 1101

2Ð→ 1110
1Ð→ 1111

Asymptotic Time Complexity of increment

The best case is that we change a single bit: O(1)
The worst case is that we change all the previous bits: O(n)



Binary Counter 6

Time Complexity of A Binary Counter
We would like to analyze an n-bit binary counter with the single method
increment(). For example,

0000
1Ð→ 0001

2Ð→ 0010
1Ð→ 0011

3Ð→ 0100
1Ð→ 0101

2Ð→ 0110
1Ð→ 0111

4Ð→

1000
1Ð→ 1001

2Ð→ 1010
1Ð→ 1011

3Ð→ 1100
1Ð→ 1101

2Ð→ 1110
1Ð→ 1111

Amortized Time Complexity of increment

As always, the first step is to split the operations into “chunks”. Where’s
a good splitting point?

11⋯1
²

n

→ 11⋯1
²

n+1
Looking at the ones we’ve already calculated, we get:

n n = 0 n = 1 n = 2 n = 3
T(n)

1 3 5 7

Great. So, it looks like each range takes T(n) = 2n+1−1 bit changes. Let’s
prove it.



Binary Counter 6

Time Complexity of A Binary Counter
We would like to analyze an n-bit binary counter with the single method
increment(). For example,

0000
1Ð→ 0001

2Ð→ 0010
1Ð→ 0011

3Ð→ 0100
1Ð→ 0101

2Ð→ 0110
1Ð→ 0111

4Ð→

1000
1Ð→ 1001

2Ð→ 1010
1Ð→ 1011

3Ð→ 1100
1Ð→ 1101

2Ð→ 1110
1Ð→ 1111

Amortized Time Complexity of increment

As always, the first step is to split the operations into “chunks”. Where’s
a good splitting point?

11⋯1
²

n

→ 11⋯1
²

n+1
Looking at the ones we’ve already calculated, we get:

n n = 0 n = 1 n = 2 n = 3
T(n)

1 3 5 7

Great. So, it looks like each range takes T(n) = 2n+1−1 bit changes. Let’s
prove it.



Binary Counter 6

Time Complexity of A Binary Counter
We would like to analyze an n-bit binary counter with the single method
increment(). For example,

0000
1Ð→ 0001

2Ð→ 0010
1Ð→ 0011

3Ð→ 0100
1Ð→ 0101

2Ð→ 0110
1Ð→ 0111

4Ð→

1000
1Ð→ 1001

2Ð→ 1010
1Ð→ 1011

3Ð→ 1100
1Ð→ 1101

2Ð→ 1110
1Ð→ 1111

Amortized Time Complexity of increment

As always, the first step is to split the operations into “chunks”. Where’s
a good splitting point?

11⋯1
²

n

→ 11⋯1
²

n+1
Looking at the ones we’ve already calculated, we get:

n n = 0 n = 1 n = 2 n = 3
T(n) 1 3 5 7

Great. So, it looks like each range takes T(n) = 2n+1−1 bit changes. Let’s
prove it.



Binary Counter 7

Time Complexity of A Binary Counter
We would like to analyze an n-bit binary counter with the single method
increment().

0000
1Ð→ 0001

2Ð→ 0010
1Ð→ 0011

3Ð→ 0100
1Ð→ 0101

2Ð→ 0110
1Ð→ 0111

4Ð→

1000
1Ð→ 1001

2Ð→ 1010
1Ð→ 1011

3Ð→ 1100
1Ð→ 1101

2Ð→ 1110
1Ð→ 1111

Amortized Time Complexity of increment

n n = 0 n = 1 n = 2 n = 3
T(n) 1 2 4 8

We go by induction on n. Let P(n) be the statement

“incrementing the counter from 11⋯1
²

n

to 11⋯1
²

n+1

changes 2n+1−1 bits”

for all n ∈N.
Base Case (n = 0).
This changes 1 bit. Note that 21−1 = 2−1 = 1. So, the base case holds.
Induction Hypothesis.

Suppose P(k) is true for all 0 ≤ k ≤ ` for some l ∈N.



Binary Counter 8

Amortized Time Complexity of increment

P(n) =“incrementing from 11⋯1
²

n

to 11⋯1
²

n+1

changes 2n+1−1 bits”

Induction Step. We are interested in the range 1⋯1
±̀
+1

→ 11⋯1
²̀
+2

.

We split this range into pieces:
0111⋯11→ 1000⋯00
1000⋯00→ 1000⋯01
1000⋯01→ 1000⋯11
. . .
1001⋯11→ 1011⋯11
1011⋯11→ 1111⋯11

Luckily for us, the bits that change in these ranges are identical to the
previous cases! In particular, in the (i+1)st range, we do 2i+1−1
changes. Note that the first step takes `+2 changes.
Thus, the entire range changes:

(
`+1

∑
k=0

2k −1)+(`+2) = 2`+2−1
2−1

−`−1+`+1 = 2`+2−1



Binary Counter 9

Time Complexity of A Binary Counter
We would like to analyze an n-bit binary counter with the single method
increment().

0000
1Ð→ 0001

2Ð→ 0010
1Ð→ 0011

3Ð→ 0100
1Ð→ 0101

2Ð→ 0110
1Ð→ 0111

4Ð→ 1000

Amortized Complexity of increment

So, now we know incrementing from 2k −1 to 2k+1−1 changes 2k+1−1
bits.

Note that 2k+1−1−(2k +1) = 2k. So, the amortized cost of incrementing

the counter is 2k+1−1
2k ≤ 2.



A New Data Structure! 10

Amortized Sorted Array Dictionary
Consider the following data structure:

We have an array of sorted arrays of ints. The ith array has size
2i. So, for example:

a[0]: 5
a[0][0]

a[1]: null

a[2]: 6 8 9 11
a[2][0] a[2][1] a[2][2] a[2][3]

a[3]: 1 10 12 14 16 18 20 22
a[3][0] a[3][1] a[3][2] a[3][3] a[3][4] a[3][5] a[3][6] a[3][7]

The single method add(val) which works as follows:
Make a new array temp: val

temp[0]

Until we find a null array:
If a[i] is null, set a[i] = temp.
Otherwise, temp = merge(a[i], temp); a[i] = null; and loop.

Asymptotic Complexity of add
First, let’s define our variables. There are n arrays and m =

n

∑
i=0

2i = 2n+1−1

elements in the array.
In the worst case, we need to go through all n arrays, merging at each
step. In this case, our runtime is

n

∑
i=0

2(2i) = 2(2n+1−1) = 2m =O(m)



A New Data Structure! 11

Amortized Sorted Array Dictionary
a[0]: 5

a[0][0]

a[1]: null

a[2]: 6 8 9 11
a[2][0] a[2][1] a[2][2] a[2][3]

a[3]: 1 10 12 14 16 18 20 22
a[3][0] a[3][1] a[3][2] a[3][3] a[3][4] a[3][5] a[3][6] a[3][7]

The single method add(val) which works as follows:
Make a new array temp: val

temp[0]

Until we find a null array:
If a[i] is null, set a[i] = temp.
Otherwise, temp = merge(a[i], temp); a[i] = null; and loop.

Amortized Complexity of add

A natural split-up would be going from a data structure with only the
largest array filled to a data structure with only the next largest array
filled. Aha! This is the same problem as the binary counter! We
showed previously that there are 2n edits in the block from 2n−1 to 2n,
but this time, each of those edits is O(n) instead of O(1). So, the total

cost is going to be
n−1

∑
i=0

i(2i−1)+n(n) ≈ 2n(n−2). Since we’re amortizing

over 2n−1 operations, this gives us O(n) =O(logm). Not bad!



And one more thing. . . 12

How does search look in this data structure?

We have to binary search through each array. In the worst case, we have
to binary search through all of them:

Asymptotic Complexity of search

T(n) =
n

∑
i=0

lg(2i) = n(n+1)
2

Notice that n here is the number of arrays. The number of elements
is logrithmic in the number of arrays. That is if there are n arrays,

then there are m = 21 +22 +⋯+2n =
n

∑
i=0

2i = 2n+1 −1 elements. That is,

n = lg(m+1). So, the runtime is lg(m+1) lg(m+1)+1
2

=O(lg2(m))


	Amortized Analysis of ArrayStack
	Amortized Analysis of A Binary Counter
	Amortized Analysis of A New Data Structure

