Adam Blank	Lecture 4	Summer 2015
Data Abstractions		

Outline

1 Amortized Analysis of ArrayStack

2 Amortized Analysis of A Binary Counter

3 Amortized Analysis of A New Data Structure

Analyzing push for an ArrayStack

Best Case
There's more space in the underlying array! Then, it's $\Omega(1)$.

Worst Case

If there's no more space, we double the size of the array, and copy all the elements. So, it's $\mathcal{O}(n)$.

Insight: Our analysis seems wrong. Saying linear time feels wrong.

Amortized Analysis

Stack ADT

push(val)	Adds val to the stack.
pop()	Returns the most-recent item not already returned by a pop. (Errors if empty.)
peek()	Returns the most-recent item not already returned by a pop. (Errors if empty.)
isEmpty()	Returns true if all inserted elements have been returned by a pop.

Let's analyze the time complexity for these various methods. (You know how they work, because you just implemented them!)

Method	Time Complexity
isEmpty()	$\Theta(1)$
peek()	$\Theta(1)$
pop()	$\Theta(1)$
push(val)	$? ?$

push is actually slightly more interesting.

Analyzing push for an ArrayStack

This is where "amortized analysis" comes in. Sometimes, we have a very rare expensive operation that we can "charge" to other operations.

Intuition: Rent, Tuition

You pay one big sum for a long period of time, but you can afford it because it happens very rarely.

Back to ArrayStack
Say we have a full Stack of size n. Then, consider the next n pushes:

- The next push will take $\mathcal{O}(n)$ (to resize the array to size $2 n$)
- The $n-1$ operations after that will all be $\mathcal{O}(1)$, because we know we have enough space

Considering these operations in aggregate, we have n operations that take
$\left(c_{0}+c_{1} n\right)+(n-1) \times c_{2}$ time.
So, how long does each operation take:

$$
\frac{\left(c_{0}+c_{1} n\right)+(n-1) \times c_{2}}{n} \leq \frac{n \max \left(c_{0}, c_{2}\right)+c_{1} n}{n}=\max \left(c_{0}, c_{2}\right)+c_{1}=\mathcal{O}(1)
$$

What happens if we change our resize rule to each of the following:

- $n \rightarrow n+1$

This is really bad! We can only amortize over the single operation which gives us:

$$
\frac{n}{1}=\mathcal{O}(n)
$$

- $n \rightarrow \frac{3 n}{2}$

This still works. Now, we go over the next $\frac{3 n}{2}-n$ operations:

$$
\frac{n+(n / 2-1) \times 1}{\frac{n}{2}}=\mathcal{O}(1)
$$

- $n \rightarrow 5 n$

This is good too:
$\frac{n+(4 n-1) \times 1}{4 n}=\mathcal{O}(1)$
Which is better $2 n, \frac{3 n}{2}$, or $5 n$?

$$
\text { Java uses } \frac{3 n}{2} \text { to minimized wasted space. }
$$

Binary Counter

Time Complexity of A Binary Counter

We would like to analyze an n-bit binary counter with the single method increment(). For example,

$$
\begin{aligned}
& 0000 \xrightarrow{1} 0001 \xrightarrow{2} 0010 \xrightarrow{1} 0011 \xrightarrow{3} 0100 \xrightarrow{1} 0101 \xrightarrow{2} 0110 \xrightarrow{1} 0111 \xrightarrow{4}^{1000 \xrightarrow{1} 1001 \xrightarrow{2} 1010 \xrightarrow{1} 1011 \xrightarrow{3} 1100 \xrightarrow{1} 1101 \xrightarrow{2} 1110 \xrightarrow{1} 1111}
\end{aligned}
$$

Amortized Time Complexity of increment
As always, the first step is to split the operations into "chunks". Where's a good splitting point?

$$
\underbrace{11 \cdots 1}_{n} \rightarrow \underbrace{11 \cdots 1}_{n+1}
$$

Looking at the ones we've already calculated, we get:

n	$n=0$	$n=1$	$n=2$	$n=3$
$T(n)$	1	3	5	7

Great. So, it looks like each range takes $T(n)=2^{n+1}-1$ bit changes. Let's prove it.

Binary Counter

Amortized Time Complexity of increment
$P(n)=$ "incrementing from $\underbrace{11 \cdots 1}_{n}$ to $\underbrace{11 \cdots 1}_{n+1}$ changes $2^{n+1}-1$ bits"
Induction Step. We are interested in the range $\underbrace{1 \cdots 1}_{\ell+1} \rightarrow \underbrace{11 \cdots 1}_{\ell+2}$.
We split this range into pieces:

- $0111 \cdots 11 \rightarrow 1000 \cdots 00$
- $1000 \cdots 00 \rightarrow 1000 \cdots 01$
- $1000 \cdots 01 \rightarrow 1000 \cdots 11$

■...

- $1001 \cdots 11 \rightarrow 1011 \cdots 11$
- $1011 \cdots 11 \rightarrow 1111 \cdots 11$

Luckily for us, the bits that change in these ranges are identical to the previous cases! In particular, in the ($i+1$)st range, we do $2^{i+1}-1$ changes. Note that the first step takes $\ell+2$ changes.
Thus, the entire range changes:

$$
\left(\sum_{k=0}^{\ell+1} 2^{k}-1\right)+(\ell+2)=\frac{2^{\ell+2}-1}{2-1}-\ell-1+\ell+1=2^{\ell+2}-1
$$

Time Complexity of A Binary Counter
We would like to analyze an n-bit binary counter with the single method increment(). For example,

$$
0000 \xrightarrow{1} 0001 \xrightarrow{2} 0010 \xrightarrow{\xrightarrow{\prime}} 0011 \xrightarrow{3} 0100 \xrightarrow{1} 0101 \xrightarrow{2} 0110 \xrightarrow{1} 0111 \xrightarrow{4}
$$

$$
1000 \xrightarrow{1} 1001 \xrightarrow{2} 1010 \xrightarrow{1} 1011 \xrightarrow{3} 1100 \xrightarrow{1} 1101 \xrightarrow{2} 1110 \xrightarrow{1} 1111
$$

Asymptotic Time Complexity of increment

The best case is that we change a single bit: $\mathcal{O}(1)$
The worst case is that we change all the previous bits: $\mathcal{O}(n)$

Binary Counter

Time Complexity of A Binary Counter
We would like to analyze an n-bit binary counter with the single method increment().

$$
\begin{aligned}
& 0000 \xrightarrow{1} 0001 \xrightarrow{2} 0010 \xrightarrow{1} 0011 \xrightarrow{3} 0100 \xrightarrow{1} 0101 \xrightarrow{2} 0110 \xrightarrow{\frac{1}{\rightarrow}} 0111 \xrightarrow{4} \\
& 1000 \xrightarrow{1} 1001 \xrightarrow{2} 1010 \xrightarrow{1} 1011 \xrightarrow{3} 1100 \xrightarrow{1} 1101 \xrightarrow{2} 1110 \xrightarrow{\frac{1}{\rightarrow}} 1111
\end{aligned}
$$

Amortized Time Complexity of increment

n	$n=0$	$n=1$	$n=2$	$n=3$
$T(n)$	1	2	4	8

We go by induction on n. Let $P(n)$ be the statement
"incrementing the counter from $\underbrace{11 \cdots 1}_{n}$ to $\underbrace{11 \cdots 1}_{n+1}$ changes $2^{n+1}-1$ bits" for all $n \in \mathbb{N}$.
Base Case ($n=0$).
This changes 1 bit. Note that $2^{1}-1=2-1=1$. So, the base case holds. Induction Hypothesis.

Suppose $P(k)$ is true for all $0 \leq k \leq \ell$ for some $l \in \mathbb{N}$.

Binary Counter

Time Complexity of A Binary Counter
We would like to analyze an n-bit binary counter with the single method increment().

$$
0000 \xrightarrow{1} 0001 \xrightarrow{2} 0010 \xrightarrow{1} 0011 \xrightarrow{3} 0100 \xrightarrow{1} 0101 \xrightarrow{2} 0110 \xrightarrow{1} 0111 \xrightarrow{4} 1000
$$

Amortized Complexity of increment

So, now we know incrementing from $2^{k}-1$ to $2^{k+1}-1$ changes $2^{k+1}-1$ bits.

Note that $2^{k+1}-1-\left(2^{k}+1\right)=2^{k}$. So, the amortized cost of incrementing the counter is $\frac{2^{k+1}-1}{2^{k}} \leq 2$.

A New Data Structure!
Amortized Sorted Array Dictionary
Consider the following data structure:

- We have an array of sorted arrays of ints. The i th array has size 2^{i}. So, for example:
a a[0]: $\frac{5}{\text { Linin }}$

- The single method add(val) which works as follows:
- Make a new array temp: val
- Until we find a null array:
- If a[i] is null, set a[i] = temp.
- Otherwise, temp = merge (a[i], temp); a[i] = null; and loop.

Asymptotic Complexity of add
First, let's define our variables. There are n arrays and $m=\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$ elements in the array.
In the worst case, we need to go through all n arrays, merging at each step. In this case, our runtime is

$$
\sum_{i=0}^{n} 2\left(2^{i}\right)=2\left(2^{n+1}-1\right)=2 m=\mathcal{O}(m)
$$

A New Data Structure!

Amortized Sorted Array Dictionary
a 0 [0]:
a(1): nu11

- The single method add(val) which works as follows:
- Make a new array temp: val
- Until we find a null array:
- If a [i] is null, set a[i] = temp.

■ Otherwise, temp $=\operatorname{merge}(\mathrm{a}[\mathrm{i}]$, temp) ; $\mathrm{a}[\mathrm{i}]=$ null; and loop.
Amortized Complexity of add
A natural split-up would be going from a data structure with only the largest array filled to a data structure with only the next largest array filled. Aha! This is the same problem as the binary counter! We showed previously that there are 2^{n} edits in the block from 2^{n-1} to 2^{n}, but this time, each of those edits is $\mathcal{O}(n)$ instead of $\mathcal{O}(1)$. So, the total cost is going to be $\sum_{i=0}^{n-1} i\left(2^{i}-1\right)+n(n) \approx 2^{n}(n-2)$. Since we're amortizing over 2^{n-1} operations, this gives us $\mathcal{O}(n)=\mathcal{O}(\log m)$. Not bad!

And one more thing. . .

How does search look in this data structure?
We have to binary search through each array. In the worst case, we have to binary search through all of them:

Asymptotic Complexity of search

$$
T(n)=\sum_{i=0}^{n} \lg \left(2^{i}\right)=\frac{n(n+1)}{2}
$$

Notice that n here is the number of arrays. The number of elements is logrithmic in the number of arrays. That is if there are n arrays,
then there are $m=2^{1}+2^{2}+\cdots+2^{n}=\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$ elements. That is, $n=\lg (m+1)$. So, the runtime is $\frac{\lg (m+1) \lg (m+1)+1}{2}=\mathcal{O}\left(\lg ^{2}(m)\right)$

