

Data Abstractions

CSE 332: Data Abstractions

Algorithm Analysis 2

Outline

1 Warm-Ups

2 Analyzing Recursive Code

3 Generating and Solving Recurrences

Let x and L be LinkedList Nodes.
Analyzing append

1	ap	
2		
3		
4		
5		
6		
7		

What is the. .
best case time complexity of append?
worst case time complexity of append?

Let x and L be LinkedList Nodes.
Analyzing append

```
append(x, L) {
    Node curr = L;
    while (curr != null && curr.next != null) {
        curr = curr.next;
    }
    curr.next = x;
}
```

What is the. . .
best case time complexity of append? $\Omega(n)$, because we always must do n iterations of the loop.
worst case time complexity of append?

Let x and L be LinkedList Nodes.
Analyzing append

```
append(x, L) {
    Node curr = L;
    while (curr != null && curr.next != null) {
        curr = curr.next;
    }
    curr.next = x;
}
```

What is the. . .

- best case time complexity of append? $\Omega(n)$, because we always must do n iterations of the loop.
worst case time complexity of append?
$\mathcal{O}(n)$, because we never do more than n iterations of the loop.

Let x and L be LinkedList Nodes.
Analyzing append

```
1
```

append(x, L) \{
Node curr = L;
while (curr != null \&\& curr.next != null) \{
curr $=$ curr.next;
\}
curr.next $=x$;
\}

What is the. . .

- best case time complexity of append? $\Omega(n)$, because we always must do n iterations of the loop.
worst case time complexity of append? $\mathcal{O}(n)$, because we never do more than n iterations of the loop.

Since we can upper and lower bound the time complexity with the same complexity class, we can say append runs in $\Theta(n)$.

Merge

Pre-Condition: L_{1} and L_{2} are sorted.
Post-Condition: Return value is sorted.
Merge
1

```
merge( L , , L2) {
    p1, p2 = 0;
    While both lists have more elements:
        Append the smaller element to L.
        Increment p1 or p2, depending on which had the smaller element
    Append any remaining elements from LL or L2 to L
    return L
}
```

What is the. .
best case \# of comparisons of merge?
worst case \# of comparisons of merge?
worst case space usage of merge?

Merge

Pre-Condition: L_{1} and L_{2} are sorted.
Post-Condition: Return value is sorted.
Merge
1

```
merge(L, L, L2) {
    p1, p2 = 0;
    While both lists have more elements:
        Append the smaller element to L.
        Increment p1 or p2, depending on which had the smaller element
    Append any remaining elements from LL or L2 to L
    return L
}
```

What is the. .

- best case \# of comparisons of merge?
$\Omega(1)$. Consider the input: [0], [1, 2, 3, 4, 5, 6].
worst case \# of comparisons of merge?
worst case space usage of merge?

Merge

Pre-Condition: L_{1} and L_{2} are sorted.
Post-Condition: Return value is sorted.

Merge

```
merge( }\mp@subsup{L}{1}{},\mp@subsup{L}{2}{}) 
    p1, p2 = 0;
    While both lists have more elements:
        Append the smaller element to L.
        Increment p1 or p2, depending on which had the smaller element
        Append any remaining elements from LL or L2 to L
        return L
}
```

What is the. .

- best case \# of comparisons of merge?
$\Omega(1)$. Consider the input: [0], [1, 2, 3, 4, 5, 6].
worst case \# of comparisons of merge?
$\mathcal{O}(n)$. Consider the input: $[1,3,5],[2,4,6]$.
worst case space usage of merge?

Merge

Pre-Condition: L_{1} and L_{2} are sorted.
Post-Condition: Return value is sorted.

Merge

```
merge( }\mp@subsup{L}{1}{},\mp@subsup{L}{2}{}) 
    p1, p2 = 0;
    While both lists have more elements:
        Append the smaller element to L.
        Increment p1 or p2, depending on which had the smaller element
    Append any remaining elements from LL or L2 to L
    return L
}
```

What is the. .

- best case \# of comparisons of merge?
$\Omega(1)$. Consider the input: [0], [1, 2, 3, 4, 5, 6].
worst case \# of comparisons of merge?
$\mathcal{O}(n)$. Consider the input: $[1,3,5],[2,4,6]$.
worst case space usage of merge?
$\mathcal{O}(n)$, because we allocate a constant amount of space per element.

Consider the following code:

Merge Sort

What is the worst case/best case \# of comparisons of sort?

Yeah, yeah, it's $\mathcal{O}(n \lg n)$, but why?

What is a recurrence?

In CSE 311, you saw a bunch of questions like:
Induction Problem
Let $f_{0}=0, f_{1}=1, f_{n}=f_{n-1}+f_{n-2}$ for all $n \geq 2$. Prove $f_{n}<2^{n}$ for all $n \in \mathbb{N}$.
(Remember the Fibonacci Numbers? You'd better bet they're going to show up in this course!)

That's a recurrence. That's it.

Definition (Recurrence)
A recurrence is a recursive definition of a function in terms of smaller values.

Merge Sort is hard; so. . .

Let's start with trying to analyze this code:
LinkedList Reversal

```
reverse(L) {
    if (L == null) {
        return null;
    }
    else {
        Node front = L;
        Node rest = L.next;
        L.next = null;
        Node restReversed = reverse(rest);
        append(front, restReversed);
    }
}
```

Notice that append is the same function from the beginning of lecture that had runtime $\mathcal{O}(n)$.

So, what is the time complexity of reverse?
We split the work into two pieces:

- Non-Recursive Work

Recursive Work

Non-Recursive Work

LinkedList Reversal

Non-Recursive Work: $\mathcal{O}(n)$, which means we can write it as $c_{0}+c_{1} n$ for some constants c_{0} and c_{1}.

Non-Recursive Work

LinkedList Reversal

```
reverse(L) {
```

reverse(L) {
if (L == null) {
if (L == null) {
return null;
return null;
}
}
else {
else {
Node front = L;
Node front = L;
Node rest = L.next;
Node rest = L.next;
L.next = null;
L.next = null;
Node restReversed = reverse(rest);
Node restReversed = reverse(rest);
append(front, restReversed);
append(front, restReversed);
}
}
}

```
}
```

Non-Recursive Work: $\mathcal{O}(n)$, which means we can write it as $c_{0}+c_{1} n$ for some constants c_{0} and c_{1}.
Recursive Work: The work it takes to do reverse on a list one smaller. Putting these together almost gives us the recurrence:

$$
T(n)=c_{0}+c_{1} n+T(n-1)
$$

We're missing the base case!

LinkedList Reversal

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ c_{0}+c_{1} n+T(n-1) & \text { otherwise }\end{cases}
$$

Now, we need to solve the recurrence.

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ c_{0}+c_{1} n+T(n-1) & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
T(n) & =\left(c_{0}+c_{1} n\right)+T(n-1) \\
& =\left(c_{0}+c_{1} n\right)+\left(c_{0}+c_{1}(n-1)\right)+T(n-2) \\
& =\left(c_{0}+c_{1} n\right)+\left(c_{0}+c_{1}(n-1)\right)+\left(c_{0}+c_{1}(n-2)\right)+\ldots+\left(c_{0}+c_{1}(1)\right)+d_{0} \\
& =\sum_{i=0}^{n-1}\left(c_{0}+c_{1}(n-i)\right)+d_{0} \\
& =\sum_{i=0}^{n-1} c_{0}+\sum_{i=0}^{n-1} c_{1}(n-i)+d_{0} \\
& =n c_{0}+c_{1} \sum_{i=1}^{n} i \\
& =n c_{0}+c_{1}\left(\frac{n(n+1)}{2}\right)+d_{0} \\
& =\mathcal{O}\left(n^{2}\right)
\end{aligned}
$$

A recurrence where we solve some constant piece of the problem (e.g. "-1", "-2", etc.) is called a Linear Recurrence.

We solve these like we did above by Unrolling the Recurrence.

This is a fancy way of saying "plug the definition into itself until a pattern emerges".

Now, back to mergesort.

Analyzing Merge Sort

```
Merge Sort
l sort(L) { 
```

First, we need to find the recurrence:
$T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+c_{1} n+2 T(n / 2) & \text { otherwise }\end{cases}$

This recurrence isn't linear! This is a "divide and conquer" recurrence.

Analyzing Merge Sort

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+c_{1} n+2 T(n / 2) & \text { otherwise }\end{cases}
$$

This time, there are multiple possible approaches:
Unrolling the Recurrence

$$
\begin{aligned}
T(n) & =\left(c_{2}+c_{1} n\right)+2\left(c_{2}+c_{1} n+2 T(n / 4)\right) \\
& =\left(c_{2}+c_{1} n\right)+2\left(c_{2}+c_{1} n+2\left(c_{2}+c_{1} n+2 T(n / 8)\right)\right) \\
& =c_{2}+2 c_{2}+4 c_{2}+\ldots+\operatorname{argh}+\ldots
\end{aligned}
$$

This works, but l'd rarely recommend it.

Insight: We're branching in this recurrence. So, represent it as a tree!

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+c_{1} n+\underset{T(n)}{2 T(n / 2)} & \text { otherwise }\end{cases}
$$

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+c_{1} n+2 T(n / 2) & \text { otherwise } \\ \bigwedge_{T(n / 2)}^{n} & \end{cases}
$$

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+c_{1} n+2 T(n / 2) & \text { otherwise }\end{cases}
$$

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+c_{1} n+2 T(n / 2) & \text { otherwise }\end{cases}
$$

Since the recursion tree has height $\lg (n)$ and each row does n work, it follows that $T(n) \in \mathcal{O}(n \lg (n))$.

Find A Big-Oh Bound For The Worst Case Runtime

```
1 sum(n) {
2 if ( }\textrm{n}<2\mathrm{ ) {
        return n;
    }
    return 2 + sum(n - 2);
}
```

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{0} & \text { if } n=1 \\ c_{0}+T(n-2) & \text { otherwise }\end{cases}
$$

$$
T(n)=c_{0}+c_{0}+\cdots+c_{0}+d_{0}
$$

$$
=c_{0}\left(\frac{n}{2}\right)+d_{0}
$$

$$
=\mathcal{O}(n)
$$

Find A Big-Oh Bound For The Worst Case Runtime

```
binarysearch(L, value) {
    if (L.size() == 0) {
        return false;
    }
    else if (L.size() == 1) {
        return L[0] == value;
    }
    else {
        int mid = L.size() / 2;
        if (L[mid] < value) {
        return binarysearch(L.subList(mid + 1, L.size()), value);
        }
        else {
            return binarysearch(L.subList(0, mid), value);
        }
    }
}
```

$T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+T(n / 2) & \text { otherwise }\end{cases}$

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+T(n / 2) & \text { otherwise }\end{cases}
$$

So, $T(n)=c_{0}(\lg (n)-1)+d_{1}=\mathcal{O}(\lg n)$.

- Gauss' Sum: $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$

Infinite Geometric Series: $\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x}$, when $|x|<1$.

Finite Geometric Series: $\sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}$, when $x \neq 1$.

Consider a recurrence of the form:

$$
T(n)= \begin{cases}d & \text { if } n=1 \\ a T\left(\frac{n}{b}\right)+n^{c} & \text { otherwise }\end{cases}
$$

Then,
If $\log _{b}(a)<c$, then $T(n)=\Theta\left(n^{c}\right)$.

- If $\log _{b}(a)=c$, then $T(n)=\Theta\left(n^{c} \lg (n)\right)$.
- If $\log _{b}(a)>c$, then $T(n)=\Theta\left(n^{\log _{b}(a)}\right)$.

Sanity Check: For Merge Sort, we have $a=2, b=2, c=1$. Then, $\log _{2}(2)=1=1$. So, $T(n)=n \lg n$.

$$
T(n)= \begin{cases}d & \text { if } n=1 \\ a T\left(\frac{n}{b}\right)+n^{c} & \text { otherwise }\end{cases}
$$

We assume that $\log _{b}(a)<c$. Then, unrolling the recurrence, we get:

$$
\begin{aligned}
T(n) & =n^{c}+a T(n / b) \\
& =n^{c}+a\left((n / b)^{c}+a T\left(n / b^{2}\right)\right) \\
& =n^{c}+a(n / b)^{c}+a^{2}\left(n / b^{2}\right)^{c}+\cdots+a^{\log _{b}(n)}\left(n / b^{\log _{b} n}\right)^{c} \\
& =\sum_{i=0}^{\log _{b}(n)} a^{i}\left(\frac{n^{c}}{b^{c}}\right) \\
& =n^{c} \sum_{i=0}^{\log _{b}(n)}\left(\frac{a}{b^{c}}\right)^{i} \\
& =n^{c}\left(\frac{\left(\frac{a}{b^{c}}\right)^{\log _{b}(n)+1}-1}{\left(\frac{a}{b^{c}}\right)-1}\right) \approx n^{c}\left(\left(\frac{a}{b^{c}}\right)^{\log _{b}(n)}\right) \approx n^{c}
\end{aligned}
$$

- Know how to make a recurrence from a recursive program

Know the different types of recurrences

- Be able to find a closed form for each type of recurrence

Know the common summations

- Understand why Master Theorem can be helpful

