CSE 332: Data Abstractions

Induction

Problem: Prove that some mathematical statement P(n) is true for all $n \in \mathbb{N}$.

Instances: When you are trying to prove something is true for all natural numbers, induction should be the first thing you think of.

Proof Outline

Let P(n) be the statement "[whatever the mathematical statement you are trying to prove is]".

We prove P(n) for all $n \in \mathbb{N}$ by induction. Base Case: P(0) is true, because [prove P(0) here]. Induction Hypothesis: Suppose that P(k) is true for some $k \in \mathbb{N}$. Induction Step: [Use the Induction Hypothesis to prove that P(k + 1) is true.]

Since the Base Case and Induction Step hold, P(n) holds for all natural numbers n.

Example

Problem: Prove that

$$\sum_{i=0}^n i = \frac{n(n+1)}{2} \text{ for all } n \in \mathbb{N}$$

Solution:

Let P(n) be the statement " $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$ " for all $n \in \mathbb{N}$. We prove P(n) by induction for all $n \in \mathbb{N}$. Base Case: P(0) is true, because $\sum_{i=0}^{0} i = 0 = \frac{0 \times 1}{2}$. Induction Hypothesis: Suppose that P(k) is true for some $k \in \mathbb{N}$. Induction Step: By the Induction Hypothesis, we know that $\sum_{i=0}^{k} i = \frac{k(k+1)}{2}$. Now, we prove P(k+1).

$$\sum_{i=0}^{k} i = \frac{k(k+1)}{2}$$
[By the Induction Hypothesis]

$$\iff (k+1) + \sum_{i=0}^{k} i = (k+1) + \frac{k(k+1)}{2}$$
[Adding $k+1$ to both sides]

$$\iff \sum_{i=0}^{k+1} i = \frac{2(k+1)}{2} + \frac{k(k+1)}{2}$$
[Re-arranging and algebra]

$$\iff \sum_{i=0}^{k+1} i = \frac{2(k+1) + k(k+1)}{2}$$
[Combining fractions]

$$\iff \sum_{i=0}^{k+1} i = \frac{(k+2)(k+1)}{2}$$
[Combining like terms]

That last line is precisely P(k+1), which is what we were trying to prove. Since the Base Case and Induction Step hold, P(n) holds for all natural numbers n.