
CSE 332: Data Abstractions

Section 2: Asymptotics & Recurrences

0. Big-Oh Proofs
For each of the following, prove that f ∈ O(g).

(a) f(n) = 7n g(n) =
n

10

(b) f(n) = 1000 g(n) = 3n3

(c) f(n) = 7n2 + 3n g(n) = n4

(d) f(n) = n+ 2n lg n g(n) = n lg n

1

1. Asymptotics Disproof
Prove that n2 6∈ O(n).

2

2. Is Your Program Running? Better Catch It!
For each of the following, determine the asymptotic worst-case runtime in terms of n.

(a)
1 int x = 0;
2 for (int i = n; i >= 0; i−−) {
3 if ((i % 3) == 0) {
4 break;
5 }
6 else {
7 x += n;
8 }
9 }

(b)
1 int x = 0;
2 for (int i = 0; i < n; i++) {
3 for (int j = 0; j < (n * n / 3); j++) {
4 x += j;
5 }
6 }

(c)
1 int x = 0;
2 for (int i = 0; i <= n; i++) {
3 for (int j = 0; j < (i * i); j++) {
4 x += j;
5 }
6 }

3. Induction Shminduction
Prove

n∑
i=0

2i = 2n+1 − 1 by induction on n.

3

4. The Implications of Asymptotics
For each of the following, determine if the statement is true or false.

(a) f(n) ∈ Θ((g(n)) → f(n) ∈ O(g(n))

(b) f(n) ∈ Θ(g(n)) → g(n) ∈ Θ(f(n))

(c) f(n) ∈ Ω((g(n) → g(n) ∈ O(f(n))

5. Asymptotic Analysis
For each of the following, determine if f ∈ O(g), f ∈ Ω(g), f ∈ Θ(g), several of these, or none of these.
(a) f(n) = log n g(n) = log log n

(b) f(n) = 2n g(n) = 3n

(c) f(n) = 22n g(n) = 2n

4

6. Summations
For each of the following, find a closed form.

(a)
n∑

i=0

i2

(b)
∞∑
i=0

xi

7. Recurrences and Closed Forms
For each of the following code snippets, find a recurrence for the worst case runtime of the function, and then
find a closed form for the recurrence.

(a) Consider the function f :

1 f(n) {
2 if (n == 0) {
3 return 1;
4 }
5 return 2 * f(n − 1) + 1;
6 }

• Find a recurrence for f(n).

• Find a closed form for f(n).

5

(b) Consider the function g:

1 g(n) {
2 if (n == 1) {
3 return 1000;
4 }
5 if (g(n/3) > 5) {
6 return 5 * g(n/3);
7 }
8 else {
9 return 4 * g(n/3);

10 }
11 }

• Find a recurrence for g(n).

• Find a closed form for g(n).

8. Big-Oh Bounds for Recurrences
For each of the following, find a Big-Oh bound for the provided recurrence.

(a) T (n) =

{
1 if n = 1

8T (n/2) + 4n2 otherwise

(b) T (n) =

{
1 if n = 1

7T (n/2) + 18n2 otherwise

(c) T (n) =

{
1 if n = 0

T (n− 1) + 3 otherwise

(d) T (n) =

{
1 if n = 1

T (n/2) + 3 otherwise

(e) T (n) =

{
1 if n = 0

T (n− 1) + T (n− 2) + 3 otherwise

6

9. Hello, elloH, lleoH, etc.
Consider the following code:

1 p(L) {
2 if (L == null) {
3 return [[]];
4 }
5 List ret = [];
6
7 int first = L.data;
8 Node rest = L.next;
9

10 for (List part : p(rest)) {
11 for (int i = 0; i <= part.size()) {
12 part = copy(part);
13 part.add(i, first);
14 ret.add(part);
15 }
16 }
17 return ret;
18 }

(a) Find a recurrence for the output complexity of p(L). That is, if |L| = n, what is the size of the output
list, in terms of n? Then, find a Big-Oh bound for your recurrence.

(b) Now, find a recurrence for the time complexity of p(L), and a Big-Oh bound for this recurrence as well.

10. MULTI-pop
Consider augmenting a standard Stack with an extra operation:

multipop(k): Pops up to k elements from the Stack and returns the number of elements it popped

What is the amortized cost of a series of multipop’s on a Stack assuming push and pop are both O(1)?

7

