CSE 332: Data Abstractions

Section 2: Asymptotics \& Recurrences

0. Big-Oh Proofs

For each of the following, prove that $f \in \mathcal{O}(g)$.
(a)
$f(n)=7 n$

$$
g(n)=\frac{n}{10}
$$

(b)

$$
f(n)=1000
$$

$$
g(n)=3 n^{3}
$$

(c)

$$
f(n)=7 n^{2}+3 n
$$

$$
g(n)=n^{4}
$$

(d)

$$
f(n)=n+2 n \lg n
$$

$$
g(n)=n \lg n
$$

1. Asymptotics Disproof

Prove that $n^{2} \notin \mathcal{O}(n)$.

2. Is Your Program Running? Better Catch It!

For each of the following, determine the asymptotic worst-case runtime in terms of n.
(a)

```
int x = 0;
for (int i = n; i >= 0; i--) {
    if ((i % 3) == 0) {
        break;
    }
    else {
        x += n;
    }
}
```

(b)

```
int x = 0;
for (int i = 0; i < n; i++) {
    for (int j = 0; j < (n * n / 3); j++) {
        x += j;
    }
}
```

(c)

```
int x = 0;
for (int i = 0; i <= n; i++) {
    for (int j = 0; j < (i * i); j++) {
        x += j;
    }
}
```


3. Induction Shminduction

Prove $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$ by induction on n.

4. The Implications of Asymptotics

For each of the following, determine if the statement is true or false.
(a) $f(n) \in \Theta((g(n)) \rightarrow f(n) \in \mathcal{O}(g(n))$
(b) $f(n) \in \Theta(g(n)) \rightarrow g(n) \in \Theta(f(n))$
(c) $f(n) \in \Omega((g(n) \rightarrow g(n) \in \mathcal{O}(f(n))$

5. Asymptotic Analysis

For each of the following, determine if $f \in \mathcal{O}(g), f \in \Omega(g), f \in \Theta(g)$, several of these, or none of these.
(a) $f(n)=\log n \quad \underset{g}{ }(n)=\log \log n$
(b)

$$
f(n)=2^{n}
$$

$g(n)=3^{n}$
(c)

$$
f(n)=2^{2 n}
$$

$$
g(n)=2^{n}
$$

6. Summations

For each of the following, find a closed form.
(a) $\sum_{i=0}^{n} i^{2}$
(b) $\sum_{i=0}^{\infty} x^{i}$

7. Recurrences and Closed Forms

For each of the following code snippets, find a recurrence for the worst case runtime of the function, and then find a closed form for the recurrence.
(a) Consider the function f :

```
f(n) {
    if (n == 0) {
        return 1;
    }
    return 2 * f(n - 1) + 1;
}
```

- Find a recurrence for $f(n)$.
- Find a closed form for $f(n)$.
(b) Consider the function g :

```
g(n) {
    if (n == 1) {
        return 1000;
    }
    if (g(n/3) > 5) {
        return 5 * g(n/3);
    }
    else {
        return 4 * g(n/3);
    }
}
```

- Find a recurrence for $g(n)$.
- Find a closed form for $g(n)$.

8. Big-Oh Bounds for Recurrences

For each of the following, find a Big-Oh bound for the provided recurrence.
(a) $T(n)= \begin{cases}1 & \text { if } n=1 \\ 8 T(n / 2)+4 n^{2} & \text { otherwise }\end{cases}$
(c) $T(n)= \begin{cases}1 & \text { if } n=0 \\ T(n-1)+3 & \text { otherwise }\end{cases}$
(d) $T(n)= \begin{cases}1 & \text { if } n=1 \\ T(n / 2)+3 & \text { otherwise }\end{cases}$
(b) $T(n)= \begin{cases}1 & \text { if } n=1 \\ 7 T(n / 2)+18 n^{2} & \text { otherwise }\end{cases}$
(e) $T(n)= \begin{cases}1 & \text { if } n=0 \\ T(n-1)+T(n-2)+3 & \text { otherwise }\end{cases}$

9. Hello, elloH, lleoH, etc.

Consider the following code:

```
p(L) {
    if (L == null) {
        return [[]];
    }
    List ret = [];
    int first = L.data;
    Node rest = L.next;
    for (List part : p(rest)) {
        for (int i = 0; i <= part.size()) {
            part = copy(part);
            part.add(i, first);
            ret.add(part);
        }
    }
    return ret;
}
```

(a) Find a recurrence for the output complexity of $p(L)$. That is, if $|L|=n$, what is the size of the output list, in terms of n ? Then, find a Big-Oh bound for your recurrence.
(b) Now, find a recurrence for the time complexity of $p(L)$, and a Big-Oh bound for this recurrence as well.

10. MULTI-pop

Consider augmenting a standard Stack with an extra operation:
multipop (k): Pops up to k elements from the Stack and returns the number of elements it popped
What is the amortized cost of a series of multipop's on a Stack assuming push and pop are both $\mathcal{O}(1)$?

