CSE 332: Data Abstractions

Section 2: Asymptotics & Recurrences Solutions

0. Big-Oh Proofs
For each of the following, prove that f € O(g).

(a) f(n)="Tn g(n) =

Solution: Choose ¢ = 70, ng = 1. Then, note that 7Tn = 710—0” <70 (1) forall n > 1. So, f(n) € O(g(n)).

(b) f(n) = 1000 g(n) = 3n°

Solution: Choose ¢ = 3, ng = 1000. Then, note that 1000 < n < n3 < 3n? for all n > 1000. So,

f(n) € O(g(n)).

(c) f(n) =%+ 3n g(n) =nt

Solution: Choose ¢ = 14, ng = 1. Then, note that 7n? + 3n < 7(n* +n*) < 14n* for all n > 1. So,

f(n) € O(g(n)).

(d) f(n) =n+2nlgn g(n) =nlgn

Solution: Choose ¢ = 3, ng = 1. Then, note that n + 2nlgn < nlgn + 2nlgn = 3nlgn for all n > 1. So,

f(n) € O(g(n)).

1. Asymptotics Disproof
Prove that n? ¢ O(n).

Solution:

Assume for the sake of contradiction that n? € O(n). Then, there exist ¢,ng > 0 such that n? < cn for all
n > ng. If n? < cn, then n < c. Consider ny = max(ng, c+1). Since ny > ng, we know ny < ¢, butc+1 % ¢
for any c. This is a contradiction! So, n? & O(n).

2. Is Your Program Running? Better Catch It!

For each of the following, determine the asymptotic worst-case runtime in terms of n.

(a)

1 int x = 0;

2 for (int i =n; i>=0; i——) {
3 if ((1 % 3) == 0) {

4 break;

5 }

6 else {

7 X += n;

8 }

9 1}

Solution: This is ©(1), because n, n — 1, or n — 2 will be divisible by three. So, the loop runs at most 3
times.

int x = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < (n xn / 3); j++) {
X +=j;

}

[o N, I SOV I ST

}

Solution:
n—1n?/3—1 n

SIS

2 2
% =n <T;> =0(n%)
=0 j=0 i—0

int x = 0;
for (int i = 0; i <= n; i++) {
for (int j = 0; j < (1 * i); j++) {
X +=j;

}

[o) NG, I SOV I ST

}

Solution:
n -1

ZZ 1 :ZZQ _ (n(n—l—l)ﬁ(2n+1)> _ o)

i=0 j=0 i=0

3. Induction Shminduction
n

Prove Z 20 = 9"+ _ 1 by induction on n.
i—0

Solution:

Let P(n) be the statement Z 20 = 2™ _ 1" for all n € N. We prove P(n) by induction on n.
=0

0
Base Case. Note that ZT =0=2"—1. So, P(0) is true.
i=0

Induction Hypothesis. Suppose P(k) is true for some k € N.

Induction Step. Note that

k+1 k

S i = 3 o4 ok

=0 =0
— 2k+1 14+ 2/€+1 [By |H]
— 2k+2 -1

Note that this is exactly P(k + 1).

So, the claim is true by induction on n.

4. The Implications of Asymptotics
For each of the following, determine if the statement is true or false.
(a) f(n) € ©((g(n)) = f(n) € O(g(n))

Solution:
This is true. By definition of f(n) € ©((g(n)), we have f(n) € O(g(n)).

(b) f(n) € ©(g(n)) = g(n) € O(f(n))
Solution:
This is true. By definition of f(n) € ©(g(n)), we have f(n) € O(g(n)) and f(n) € 2(g(n)). So, there
exist ng, n1,cop,c1 > 0 such that f(n) < cog(n) for all n > ng and f(n) > c1g(n) for all n > n;. Define
ny = max(ng,n1 and note that both inequalities hold for all n > ng. Then, dividing both sides by their
constants, we have:

1 1
co’ 1

It follows that g(n)is©(f(n)).

() f(n) € Q(g(n) = g(n) € O(f(n))

Solution:

So, we've found constants () and a minimum n (ng) that satisfy the definitions of Omega and Oh.

This is true. This is basically identical to the previous part (except we only have to do half the work).

5. Asymptotic Analysis
For each of the following, determine if f € O(g), f € Q(g), f € O(g), several of these

(a) f(n) =logn g(n) =loglogn
Solution: f(n) € Q(g(n))

(b) fln)=2" g(n) =3"
Solution: f(n) € O(g(n))

(c) f(n) =2%" g(n) =2"

Solution: f(n) € Q(g(n))

, or none of these.

6. Summations
For each of the following, find a closed form.

(a) >
i=0

Solution:

Since we're summing up squares, let’s guess that it's O(n?). If it is, then we know it's of the form:

an® +bn* +en +d
Let's look at small examples:

e n=0—-0
en=1—1
en=2-5
en=3—14

e n=4—30
Plugging these answers in, we get the following equations:
e d=0
ea+b+c=1
e 8a+4b+2c=5

o 27a+9b+ 4c =14

1 1 1

Solving these equations gives us: d = 0,¢c = 1 b= 70=73
So, the s ation is n’ + n’ + 2
, ummation is — + — + —.
6 2 3

(b) > o'
i=0

Solution:
OO .

Define S = Zaz’ and consider
i=0

o0 (@) [oe)
xS’:xE xZ:E ac’“:E rr=85-1
i=0 i=0 i=1

1

So, since S = S — 1; solving for S gives us S = 1 .
—x

7. Recurrences and Closed Forms

For each of the following code snippets, find a recurrence for the worst case runtime of the function, and then
find a closed form for the recurrence.
(a) Consider the function f:

1 f(n) {

2 if (n == 0) {

3 return 1;

4 }

5 return 2 x f(n — 1) + 1;
6 1}

e Find a recurrence for f(n).

Solution:

T(n) co if n=0
n)=
T(n—1)+c¢ otherwise

e Find a closed form for f(n).

Solution:

Unrolling the recurrence, we get T'(n) = ¢1 +c¢1 + -+ + ¢1 +¢o = e1n + ¢o.

n times

(b)

HOWOWOW~NOOTPAWN R

[

Consider the function g:

g(n) {
if (n) {
return 1000;

}
if (g(n/3) > 5) {
return 5 x g(n/3);
}
else {
return 4 x g(n/3);
}

-

e Find a recurrence for g(n).

Solution:

_J¢
T(n) = {2T(n/3) +c

e Find a closed form for g(n).

Solution:

The recursion tree has height logs(n). Level ¢ has work (

10g§71 o 9
3i

=0

8. Big-Oh Bounds for Recurrences
For each of the following, find a Big-Oh bound for the provided recurrence.

(a) T(n

if n=1

otherwise

1
(n) = {8T(n/2) + 4n?

Solution:

Note that @ = &, b = 2, and ¢ = 2. Since
logy(8) = 3 > 2, we have T'(n) € ©(nle2®)) =
©(n?) by Master Theorem.

if n=1

otherwise

S
(n) = 7T(n/2) + 18n?

Solution:

Note that « = 7, b = 2, and ¢ = 2. Since
log,(7) = 3 > 2, we have T(n) € ©(n'°%2(7) by
Master Theorem.

(c)

(¢)

if n=1

otherwise

i

c12
7

.) So, putting it together, we have:

if n=20

otherwise

T(n)

1
T(n—1)+3

Solution:

There are n terms to unroll and each one is con-
stant. This is ©(n).

if n=1

otherwise

T(n)

1
T(n/2) + 3

Solution:

Note that « = 1, b = 2, and ¢ = 0. Since
logy(1) = 0 = 2, we have T'(n) € O(lg(n)) by
Master Theorem.

if n=0

otherwise

T 1
") =T - 1)+ T —2) + 3

0O ~NOOThA WN

el el el el
DO WDN - OO

17

—
[o]

lution: = ;
Solution This is approximately Z 3x2h=3(2" 1) =

Note that this recurrence is bounded above by =0
T(n) = 2T'(n — 1) + 3. If we unroll that re- O(2"). We can actually find a better bound (e.g.,

currence, we get 3 + 2(3 +2(3 + --- + 2(1))). it's not the case that T'(n) € Q(2").

9. Hello, elloH, lleoH, etc.

Consider the following code:

p(L) {
if (L == null) {
return [[]];
}
List ret = [];

int first
Node rest

L.data;
L.next;

for (List part : p(rest)) {
for (int i = 0; i <= part.size()) {
part = copy(part);
part.add(i, first);
ret.add(part);
}
}

return ret;

(a) Find a recurrence for the output complexity of p(L). That is, if |L| = n, what is the size of the output
list, in terms of n? Then, find a Big-Oh bound for your recurrence.

Solution:

The base case returns a list of length one. The recursive case adds one list in each iteration of the for loop
1 if n=0

for each list returned. So, the recurrence is Out(n) =
nOut(n — 1) otherwise

So, Out(n) € O(n!)

(b) Now, find a recurrence for the time complexity of p(L), and a Big-Oh bound for this recurrence as well.

Solution:

T(n):{l if n=0

T(n—1)+Out(n —1)n otherwise
Unrolling, we get T(n) =n!l+ (n— 1)+ (n—=2)1+---+ 01 +1<n(n!) < (n+ 1) eO(n+1))

10. MULT I-pop

Consider augmenting a standard Stack with an extra operation:
multipop(k): Pops up to k elements from the Stack and returns the number of elements it popped

What is the amortized cost of a series of multipop’s on a Stack assuming push and pop are both O(1)?

Solution:
Consider an empty Stack. If we run various operations (multipop, pop, and push) on the Stack until it is once
again empty, we see the following:

e In general, multipop (k) takes time proportional to k.

e |f over the course of running the operations, we push n items, then each item is associated with at most
one multipop or pop.

e |t follows that the largest number of time the multipops can take in aggregate is n.

e Note that the smallest possible number of operationsis n + 1 (n pushes and 1 multipop).

So, the amortized analysis for this series of operations is at most

= 0(1).

n—+1

