
CSE 332: Data Abstractions

Section 2: Asymptotics & Recurrences Solutions

0. Big-Oh Proofs
For each of the following, prove that f ∈ O(g).

(a) f(n) = 7n g(n) =
n

10

Solution: Choose c = 70, n0 = 1. Then, note that 7n = 70n
10 ≤ 70

(
n
10

)
for all n ≥ 1. So, f(n) ∈ O(g(n)).

(b) f(n) = 1000 g(n) = 3n3

Solution: Choose c = 3, n0 = 1000. Then, note that 1000 ≤ n ≤ n3 ≤ 3n3 for all n ≥ 1000. So,
f(n) ∈ O(g(n)).

(c) f(n) = 7n2 + 3n g(n) = n4

Solution: Choose c = 14, n0 = 1. Then, note that 7n2 + 3n ≤ 7(n4 + n4) ≤ 14n4 for all n ≥ 1. So,
f(n) ∈ O(g(n)).

(d) f(n) = n+ 2n lg n g(n) = n lg n

Solution: Choose c = 3, n0 = 1. Then, note that n + 2n lg n ≤ n lg n + 2n lg n = 3n lg n for all n ≥ 1. So,
f(n) ∈ O(g(n)).

1. Asymptotics Disproof
Prove that n2 6∈ O(n).

Solution:
Assume for the sake of contradiction that n2 ∈ O(n). Then, there exist c, n0 > 0 such that n2 ≤ cn for all
n ≥ n0. If n2 ≤ cn, then n ≤ c. Consider n1 = max(n0, c+1). Since n1 ≥ n0, we know n1 ≤ c, but c+1 6≤ c
for any c. This is a contradiction! So, n2 6∈ O(n).

1

2. Is Your Program Running? Better Catch It!
For each of the following, determine the asymptotic worst-case runtime in terms of n.

(a)

1 int x = 0;
2 for (int i = n; i >= 0; i−−) {
3 if ((i % 3) == 0) {
4 break;
5 }
6 else {
7 x += n;
8 }
9 }

Solution: This is Θ(1), because n, n− 1, or n− 2 will be divisible by three. So, the loop runs at most 3
times.

(b)

1 int x = 0;
2 for (int i = 0; i < n; i++) {
3 for (int j = 0; j < (n * n / 3); j++) {
4 x += j;
5 }
6 }

Solution:
n−1∑
i=0

n2/3−1∑
j=0

1 =

n∑
i=0

n2

3
= n

(
n2

3

)
= Θ(n3)

(c)

1 int x = 0;
2 for (int i = 0; i <= n; i++) {
3 for (int j = 0; j < (i * i); j++) {
4 x += j;
5 }
6 }

Solution:
n∑

i=0

i2−1∑
j=0

1 =

n∑
i=0

i2 =

(
n(n+ 1)(2n+ 1)

6

)
= Θ(n3)

2

3. Induction Shminduction
Prove

n∑
i=0

2i = 2n+1 − 1 by induction on n.

Solution:

Let P (n) be the statement “
n∑

i=0

2i = 2n+1 − 1” for all n ∈ N. We prove P (n) by induction on n.

Base Case. Note that
0∑

i=0

2i = 0 = 20 − 1. So, P (0) is true.

Induction Hypothesis. Suppose P (k) is true for some k ∈ N.

Induction Step. Note that

k+1∑
i=0

2i =

k∑
i=0

2i + 2k+1

= 2k+1 − 1 + 2k+1 [By IH]

= 2k+2 − 1

Note that this is exactly P (k + 1).

So, the claim is true by induction on n.

4. The Implications of Asymptotics
For each of the following, determine if the statement is true or false.

(a) f(n) ∈ Θ((g(n)) → f(n) ∈ O(g(n))

Solution:
This is true. By definition of f(n) ∈ Θ((g(n)), we have f(n) ∈ O(g(n)).

(b) f(n) ∈ Θ(g(n)) → g(n) ∈ Θ(f(n))

Solution:
This is true. By definition of f(n) ∈ Θ(g(n)), we have f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)). So, there
exist n0, n1, c0, c1 > 0 such that f(n) ≤ c0g(n) for all n ≥ n0 and f(n) ≥ c1g(n) for all n ≥ n1. Define
n2 = max(n0, n1 and note that both inequalities hold for all n ≥ n2. Then, dividing both sides by their
constants, we have:

g(n) ≥ f(n)

c0

g(n) ≤ f(n)

c1

So, we’ve found constants
(

1
c0
, 1
c1

)
and a minimum n (n2) that satisfy the definitions of Omega and Oh.

It follows that g(n)isΘ(f(n)).

(c) f(n) ∈ Ω((g(n) → g(n) ∈ O(f(n))

Solution:
This is true. This is basically identical to the previous part (except we only have to do half the work).

3

5. Asymptotic Analysis
For each of the following, determine if f ∈ O(g), f ∈ Ω(g), f ∈ Θ(g), several of these, or none of these.

(a) f(n) = log n g(n) = log log n

Solution: f(n) ∈ Ω(g(n))

(b) f(n) = 2n g(n) = 3n

Solution: f(n) ∈ O(g(n))

(c) f(n) = 22n g(n) = 2n

Solution: f(n) ∈ Ω(g(n))

4

6. Summations
For each of the following, find a closed form.

(a)
n∑

i=0

i2

Solution:
Since we’re summing up squares, let’s guess that it’s O(n3). If it is, then we know it’s of the form:

an3 + bn2 + cn+ d

Let’s look at small examples:

• n = 0 → 0

• n = 1 → 1

• n = 2 → 5

• n = 3 → 14

• n = 4 → 30

Plugging these answers in, we get the following equations:

• d = 0

• a+ b+ c = 1

• 8a+ 4b+ 2c = 5

• 27a+ 9b+ 4c = 14

Solving these equations gives us: d = 0, c =
1

6
, b =

1

2
, a =

1

3

So, the summation is
n3

6
+

n2

2
+

n

3
.

(b)
∞∑
i=0

xi

Solution:

Define S =

∞∑
i=0

xi and consider

xS = x
∞∑
i=0

xi =
∞∑
i=0

xi+1 =
∞∑
i=1

xi = S − 1

So, since xS = S − 1; solving for S gives us S =
1

1− x
.

5

7. Recurrences and Closed Forms
For each of the following code snippets, find a recurrence for the worst case runtime of the function, and then
find a closed form for the recurrence.

(a) Consider the function f :

1 f(n) {
2 if (n == 0) {
3 return 1;
4 }
5 return 2 * f(n − 1) + 1;
6 }

• Find a recurrence for f(n).

Solution:

T (n) =

{
c0 if n = 0

T (n− 1) + c1 otherwise

• Find a closed form for f(n).

Solution:
Unrolling the recurrence, we get T (n) = c1 + c1 + · · ·+ c1︸ ︷︷ ︸

n times

+c0 = c1n+ c0.

6

(b) Consider the function g:

1 g(n) {
2 if (n == 1) {
3 return 1000;
4 }
5 if (g(n/3) > 5) {
6 return 5 * g(n/3);
7 }
8 else {
9 return 4 * g(n/3);

10 }
11 }

• Find a recurrence for g(n).

Solution:

T (n) =

{
c0 if n = 1

2T (n/3) + c1 otherwise

• Find a closed form for g(n).

Solution:
The recursion tree has height log3(n). Level i has work

(
c12i

3i

)
. So, putting it together, we have:

log3(n)−1∑
i=0

(
c12

i

3i

)
+ 2log3(n)c0 = c1

log3(n)−1∑
i=0

(
2

3

)i

+ nlog3(2)c0 =
1−

(
2
3

)log3(n)
1− 2

3

+ nlog3(2)c0

= 3−
(
2

3

)log3(n)

+ nlog3(2)c0

8. Big-Oh Bounds for Recurrences
For each of the following, find a Big-Oh bound for the provided recurrence.

(a) T (n) =

{
1 if n = 1

8T (n/2) + 4n2 otherwise

Solution:

Note that a = 8, b = 2, and c = 2. Since
log2(8) = 3 > 2, we have T (n) ∈ Θ(nlog2(8)) =
Θ(n3) by Master Theorem.

(b) T (n) =

{
1 if n = 1

7T (n/2) + 18n2 otherwise

Solution:

Note that a = 7, b = 2, and c = 2. Since
log2(7) = 3 > 2, we have T (n) ∈ Θ(nlog2(7)) by
Master Theorem.

(c) T (n) =

{
1 if n = 0

T (n− 1) + 3 otherwise

Solution:
There are n terms to unroll and each one is con-
stant. This is Θ(n).

(d) T (n) =

{
1 if n = 1

T (n/2) + 3 otherwise

Solution:
Note that a = 1, b = 2, and c = 0. Since
log2(1) = 0 = 2, we have T (n) ∈ Θ(lg(n)) by
Master Theorem.

(e) T (n) =

{
1 if n = 0

T (n− 1) + T (n− 2) + 3 otherwise

7

Solution:
Note that this recurrence is bounded above by
T (n) = 2T (n − 1) + 3. If we unroll that re-
currence, we get 3 + 2(3 + 2(3 + · · · + 2(1))).

This is approximately
n∑

i=0

3× 2i = 3(2n+1−1) =

O(2n). We can actually find a better bound (e.g.,
it’s not the case that T (n) ∈ Ω(2n).

9. Hello, elloH, lleoH, etc.
Consider the following code:

1 p(L) {
2 if (L == null) {
3 return [[]];
4 }
5 List ret = [];
6
7 int first = L.data;
8 Node rest = L.next;
9

10 for (List part : p(rest)) {
11 for (int i = 0; i <= part.size()) {
12 part = copy(part);
13 part.add(i, first);
14 ret.add(part);
15 }
16 }
17 return ret;
18 }

(a) Find a recurrence for the output complexity of p(L). That is, if |L| = n, what is the size of the output
list, in terms of n? Then, find a Big-Oh bound for your recurrence.

Solution:
The base case returns a list of length one. The recursive case adds one list in each iteration of the for loop

for each list returned. So, the recurrence is Out(n) =

{
1 if n = 0

nOut(n− 1) otherwise

So, Out(n) ∈ O(n!)

(b) Now, find a recurrence for the time complexity of p(L), and a Big-Oh bound for this recurrence as well.

Solution:

T (n) =

{
1 if n = 0

T (n− 1) + Out(n− 1)n otherwise

Unrolling, we get T (n) = n! + (n− 1)! + (n− 2)! + · · ·+ 0! + 1 ≤ n(n!) ≤ (n+ 1)! ∈ O((n+ 1)!)

10. MULTI-pop
Consider augmenting a standard Stack with an extra operation:

multipop(k): Pops up to k elements from the Stack and returns the number of elements it popped

What is the amortized cost of a series of multipop’s on a Stack assuming push and pop are both O(1)?

8

Solution:
Consider an empty Stack. If we run various operations (multipop, pop, and push) on the Stack until it is once
again empty, we see the following:

• In general, multipop(k) takes time proportional to k.

• If over the course of running the operations, we push n items, then each item is associated with at most
one multipop or pop.

• It follows that the largest number of time the multipops can take in aggregate is n.

• Note that the smallest possible number of operations is n+ 1 (n pushes and 1 multipop).

So, the amortized analysis for this series of operations is at most
2n

n+ 1
= O(1).

9

