CSE 332: Data Abstractions

Section 2: Asymptotics & Recurrences Solutions

0. Big-Oh Proofs

For each of the following, prove that $f \in \mathcal{O}(g)$.

(a)
$$f(n) = 7n$$
 $g(n) = \frac{n}{10}$

Solution: Choose c = 70, $n_0 = 1$. Then, note that $7n = \frac{70n}{10} \le 70 \left(\frac{n}{10}\right)$ for all $n \ge 1$. So, $f(n) \in \mathcal{O}(g(n))$.

(b)
$$f(n) = 1000$$
 $g(n) = 3n^3$

Solution: Choose c = 3, $n_0 = 1000$. Then, note that $1000 \le n \le n^3 \le 3n^3$ for all $n \ge 1000$. So, $f(n) \in \mathcal{O}(g(n))$.

(c)
$$f(n) = 7n^2 + 3n$$
 $g(n) = n^4$

Solution: Choose c = 14, $n_0 = 1$. Then, note that $7n^2 + 3n \le 7(n^4 + n^4) \le 14n^4$ for all $n \ge 1$. So, $f(n) \in \mathcal{O}(g(n))$.

(d)
$$f(n) = n + 2n \lg n$$
 $g(n) = n \lg n$

Solution: Choose c = 3, $n_0 = 1$. Then, note that $n + 2n \lg n \le n \lg n + 2n \lg n = 3n \lg n$ for all $n \ge 1$. So, $f(n) \in \mathcal{O}(g(n))$.

1. Asymptotics Disproof

Prove that $n^2 \notin \mathcal{O}(n)$.

Solution:

Assume for the sake of contradiction that $n^2 \in \mathcal{O}(n)$. Then, there exist $c, n_0 > 0$ such that $n^2 \leq cn$ for all $n \geq n_0$. If $n^2 \leq cn$, then $n \leq c$. Consider $n_1 = \max(n_0, c+1)$. Since $n_1 \geq n_0$, we know $n_1 \leq c$, but $c+1 \not\leq c$ for any c. This is a contradiction! So, $n^2 \notin \mathcal{O}(n)$.

2. Is Your Program Running? Better Catch It!

For each of the following, determine the asymptotic worst-case runtime in terms of n.

```
(a)
 1 int x = 0;
   for (int i = n; i >= 0; i--) {
 2
 3
      if ((i % 3) == 0) {
 4
         break;
 5
      }
 6
      else {
 7
         x += n;
 8
      }
 9 }
```

Solution: This is $\Theta(1)$, because n, n-1, or n-2 will be divisible by three. So, the loop runs at most 3 times.

(b)

Solution:

$$\sum_{i=0}^{n-1} \sum_{j=0}^{n^2/3-1} 1 = \sum_{i=0}^n \frac{n^2}{3} = n\left(\frac{n^2}{3}\right) = \Theta(n^3)$$

```
(c)
```

Solution:

$$\sum_{i=0}^{n} \sum_{j=0}^{i^2 - 1} 1 = \sum_{i=0}^{n} i^2 = \left(\frac{n(n+1)(2n+1)}{6}\right) = \Theta(n^3)$$

3. Induction Shminduction

Prove $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$ by induction on n.

Solution:

Let P(n) be the statement " $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$ " for all $n \in \mathbb{N}$. We prove P(n) by induction on n.

Base Case. Note that $\sum_{i=0}^{0} 2^i = 0 = 2^0 - 1$. So, P(0) is true.

Induction Hypothesis. Suppose P(k) is true for some $k \in \mathbb{N}$.

Induction Step. Note that

$$\sum_{i=0}^{k+1} 2^{i} = \sum_{i=0}^{k} 2^{i} + 2^{k+1}$$

= $2^{k+1} - 1 + 2^{k+1}$ [By IH]
= $2^{k+2} - 1$

Note that this is exactly P(k+1).

So, the claim is true by induction on n.

4. The Implications of Asymptotics

For each of the following, determine if the statement is true or false.

(a) $f(n) \in \Theta((g(n)) \to f(n) \in \mathcal{O}(g(n))$

Solution:

This is true. By definition of $f(n) \in \Theta((g(n)))$, we have $f(n) \in \mathcal{O}(g(n))$.

(b) $f(n) \in \Theta(g(n)) \to g(n) \in \Theta(f(n))$

Solution:

This is true. By definition of $f(n) \in \Theta(g(n))$, we have $f(n) \in \mathcal{O}(g(n))$ and $f(n) \in \Omega(g(n))$. So, there exist $n_0, n_1, c_0, c_1 > 0$ such that $f(n) \le c_0 g(n)$ for all $n \ge n_0$ and $f(n) \ge c_1 g(n)$ for all $n \ge n_1$. Define $n_2 = \max(n_0, n_1 \text{ and note that both inequalities hold for all <math>n \ge n_2$. Then, dividing both sides by their constants, we have:

$$g(n) \ge \frac{f(n)}{c_0}$$
$$g(n) \le \frac{f(n)}{c_1}$$

So, we've found constants $\left(\frac{1}{c_0}, \frac{1}{c_1}\right)$ and a minimum n (n_2) that satisfy the definitions of Omega and Oh. It follows that $g(n)is\Theta(f(n))$.

(c)
$$f(n) \in \Omega((g(n) \to g(n) \in \mathcal{O}(f(n)))$$

Solution:

This is true. This is basically identical to the previous part (except we only have to do half the work).

5. Asymptotic Analysis

For each of the following, determine if $f \in \mathcal{O}(g)$, $f \in \Omega(g)$, $f \in \Theta(g)$, several of these, or none of these.

(a)
$$f(n) = \log n$$
 $g(n) = \log \log n$

Solution: $f(n) \in \Omega(g(n))$

(b)
$$f(n) = 2^n$$
 $g(n) = 3^n$

Solution: $f(n) \in \mathcal{O}(g(n))$

(c)
$$f(n) = 2^{2n}$$
 $g(n) = 2^n$

Solution: $f(n) \in \Omega(g(n))$

6. Summations

For each of the following, find a closed form.

(a)
$$\sum_{i=0}^{n} i^2$$

Solution:

Since we're summing up squares, let's guess that it's $\mathcal{O}(n^3)$. If it is, then we know it's of the form:

$$an^3 + bn^2 + cn + d$$

Let's look at small examples:

- $n = 0 \rightarrow 0$
- $n = 1 \rightarrow 1$
- $n = 2 \rightarrow 5$
- $n = 3 \rightarrow 14$
- $n = 4 \rightarrow 30$

Plugging these answers in, we get the following equations:

- d = 0
- a+b+c=1
- 8a + 4b + 2c = 5
- 27a + 9b + 4c = 14

Solving these equations gives us: $d = 0, c = \frac{1}{6}, b = \frac{1}{2}, a = \frac{1}{3}$ So, the summation is $\frac{n^3}{6} + \frac{n^2}{2} + \frac{n}{3}$.

(b)
$$\sum_{i=0}^{\infty} x^i$$

Solution:

Define
$$S = \sum_{i=0}^{\infty} x^i$$
 and consider

$$xS = x \sum_{i=0}^{\infty} x^i = \sum_{i=0}^{\infty} x^{i+1} = \sum_{i=1}^{\infty} x^i = S - 1$$

So, since xS = S - 1; solving for S gives us $S = \frac{1}{1 - x}$.

7. Recurrences and Closed Forms

For each of the following code snippets, find a recurrence for the worst case runtime of the function, and then find a closed form for the recurrence.

(a) Consider the function f:

```
1 f(n) {
2     if (n == 0) {
3        return 1;
4     }
5     return 2 * f(n - 1) + 1;
6 }
```

• Find a recurrence for f(n).

Solution:

$$T(n) = \begin{cases} c_0 & \text{if } n = 0 \\ T(n-1) + c_1 & \text{otherwise} \end{cases}$$

• Find a closed form for f(n).

Solution:

Unrolling the recurrence, we get $T(n) = \underbrace{c_1 + c_1 + \dots + c_1}_{n \text{ times}} + c_0 = c_1 n + c_0.$

```
(b) Consider the function g:
 1 g(n) {
 2
       if (n == 1) {
 3
          return 1000;
 4
       }
 5
       if (g(n/3) > 5) {
 6
          return 5 * g(n/3);
 7
       }
 8
       else {
 9
          return 4 * g(n/3);
10
       }
11 }
```

• Find a recurrence for g(n).

Solution:

$$T(n) = \begin{cases} c_0 & \text{if } n = 1 \\ 2T(n/3) + c_1 & \text{otherwise} \end{cases}$$

• Find a closed form for g(n).

Solution:

The recursion tree has height $\log_3(n)$. Level *i* has work $\left(\frac{c_12^i}{3^i}\right)$. So, putting it together, we have:

$$\sum_{i=0}^{\log_3(n)-1} \left(\frac{c_1 2^i}{3^i}\right) + 2^{\log_3(n)} c_0 = c_1 \sum_{i=0}^{\log_3(n)-1} \left(\frac{2}{3}\right)^i + n^{\log_3(2)} c_0 = \frac{1 - \left(\frac{2}{3}\right)^{\log_3(n)}}{1 - \frac{2}{3}} + n^{\log_3(2)} c_0$$
$$= 3 - \left(\frac{2}{3}\right)^{\log_3(n)} + n^{\log_3(2)} c_0$$

8. Big-Oh Bounds for Recurrences

For each of the following, find a Big-Oh bound for the provided recurrence.

(a)
$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 8T(n/2) + 4n^2 & \text{otherwise} \end{cases}$$
 (c) $T(n) = \begin{cases} 1 & \text{if } n = 0 \\ T(n-1) + 3 & \text{otherwise} \end{cases}$

Solution:

Note that a = 8, b = 2, and c = 2. Since $\log_2(8) = 3 > 2$, we have $T(n) \in \Theta(n^{\log_2(8)}) = \Theta(n^3)$ by Master Theorem.

(b)
$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 7T(n/2) + 18n^2 & \text{otherwise} \end{cases}$$

Solution:

Note that a = 7, b = 2, and c = 2. Since $\log_2(7) = 3 > 2$, we have $T(n) \in \Theta(n^{\log_2(7)})$ by Master Theorem.

Solution:

.

There are *n* terms to unroll and each one is constant. This is $\Theta(n)$.

(d)
$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n/2) + 3 & \text{otherwise} \end{cases}$$

Solution:

Note that a = 1, b = 2, and c = 0. Since $\log_2(1) = 0 = 2$, we have $T(n) \in \Theta(\lg(n))$ by Master Theorem.

(e)
$$T(n) = \begin{cases} 1 & \text{if } n = 0 \\ T(n-1) + T(n-2) + 3 & \text{otherwise} \end{cases}$$

Solution:

Note that this recurrence is bounded above by T(n) = 2T(n-1) + 3. If we unroll that recurrence, we get $3 + 2(3 + 2(3 + \dots + 2(1)))$.

This is approximately $\sum_{i=0}^{n} 3 \times 2^{i} = 3(2^{n+1}-1) = \mathcal{O}(2^{n}).$ We can actually find a better bound (e.g., it's not the case that $T(n) \in \Omega(2^{n}).$

9. Hello, elloH, lleoH, etc.

Consider the following code:

```
1
   p(L) {
       if (L == null) {
 2
 3
          return [[]];
 4
       }
 5
       List ret = [];
 6
 7
       int first = L.data;
 8
       Node rest = L.next;
9
10
       for (List part : p(rest)) {
11
          for (int i = 0; i <= part.size()) {</pre>
             part = copy(part);
12
13
             part.add(i, first);
14
             ret.add(part);
15
          }
16
       }
17
       return ret;
18 }
```

(a) Find a recurrence for the output complexity of p(L). That is, if |L| = n, what is the size of the output list, in terms of n? Then, find a Big-Oh bound for your recurrence.

Solution:

The base case returns a list of length one. The recursive case adds one list in each iteration of the for loop for each list returned. So, the recurrence is $\operatorname{Out}(n) = \begin{cases} 1 & \text{if } n = 0 \\ n\operatorname{Out}(n-1) & \text{otherwise} \end{cases}$

So, $\mathsf{Out}(n) \in \mathcal{O}(n!)$

(b) Now, find a recurrence for the time complexity of p(L), and a Big-Oh bound for this recurrence as well.

Solution:

$$T(n) = \begin{cases} 1 & \text{if } n = 0\\ T(n-1) + \mathsf{Out}(n-1)n & \text{otherwise} \end{cases}$$

Unrolling, we get $T(n) = n! + (n-1)! + (n-2)! + \dots + 0! + 1 \le n(n!) \le (n+1)! \in \mathcal{O}((n+1)!)$

10. MULTI-pop

Consider augmenting a standard Stack with an extra operation:

multipop(k): Pops up to k elements from the Stack and returns the number of elements it popped

What is the amortized cost of a series of multipop's on a Stack assuming push and pop are both O(1)?

Solution:

Consider an *empty* Stack. If we run various operations (multipop, pop, and push) on the Stack until it is once again empty, we see the following:

- In general, multipop(k) takes time proportional to k.
- If over the course of running the operations, we push n items, then each item is associated with at most one multipop or pop.
- It follows that the largest number of time the multipops can take in aggregate is n.
- Note that the smallest possible number of operations is n + 1 (n pushes and 1 multipop).

So, the amortized analysis for this series of operations is at most $\frac{2n}{n+1} = \mathcal{O}(1)$.