
Adam Blank Autumn 2015Lecture 13

CSE332
Data Abstractions

CSE 332: Data Abstractions

Sorting

Where We Are 1

Simple:O(n2) Fancy:O(n lgn) Specialized:O(n)
Insertion Sort
Selection Sort

. . .

Heap Sort
Merge Sort

. . .

Counting Sort
Radix Sort

. . .

We’ve discussed some sorting methods

They all happened to be Ω(n lgn). Can we do better?

Bounding The MAXIMUM Problem 2

Upper Bound

1 int findMax(int[] arr) {
2 int max = arr[0];
3 for (i = 0; i < arr.length; i++) {
4 if (arr[i] > max) {
5 max = arr[i];
6 }
7 }
8 return max;
9 }

max = x

x
A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

This algorithm takes at most n−1 comparisons. So, n−1 is an upper
bound for the MAXIMUM problem.

Bounding The MAXIMUM Problem 3

Lower Bounds are much more difficult to prove. We must show that any
algorithm that solves the problem has to do something.

Lower Bound (Proof #1)
Consider an algorithm that solves the MAXIMUM problem in fewer
than n−1 comparisons.
Since the algorithm uses fewer than n−1 comparisons, there must be
some element of the input that wasn’t compared to anything (say it’s x):

a0 a1 a2 x a3 a4 a5 a6
A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

Consider two distinct values for x:
x =min(a0,a1,a2, . . . ,an)−1
x =max(a0,a1,a2, . . . ,an)+1

Notice that, to be correct, the algorithm must output different answers
based on the value of x.

But it never examines x! So, it must always output the same thing
on otherwise identical arrays.

Bounding The MAXIMUM Problem 4

Key Ideas
Must be able to output any valid answer (every index is the max for
some input)
The only computations that give information about the correct
answer are the comparisons
Must only have one valid possibility remaining before answering

Decision Tree
Consider the comparisons some (arbitrary) algorithm makes:

a b c d

a c d

a d

ad

a < c a > d

c d

cd

d < c c > d

a < c a > c

b c d

b d

bd

b < c b > d

c d

cd

d < c c > d

b < c b > c

a < b a > b

This is a decision tree. The nodes have the remaining valid
possibilities. The edges represent making a comparison.



Bounding The MAXIMUM Problem 5

Lower Bound (Proof #2)
a b c d

a c d

a d

ad

a < c a > d

c d

cd

d < c c > d

a < c a > c

b c d

b d

bd

b < c b > d

c d

cd

d < c c > d

b < c b > c

a < b a > b

Every valid output (element of the array) must be a leaf
Some decision tree completely represents the execution of any
algorithm that solves this problem
The algorithm must get to a leaf before stopping

We are interested in the worst case # of comparisons. So, we want to
know how long the longest path is (e.g. what is the height of the tree).

A single comparison can rule out (at most) one output.
We begin with n possibilities and each comparison rules out at most
one. So, the minimum length of the longest path is n−1.

The Main Event! 6

Lower Bound for Sorting
a b c

A[0] A[1] A[2]

a c b
A[0] A[1] A[2]

b a c
A[0] A[1] A[2]

b c a
A[0] A[1] A[2]

c a b
A[0] A[1] A[2]

c b a
A[0] A[1] A[2]

b a c
A[0] A[1] A[2]

b c a
A[0] A[1] A[2]

c b a
A[0] A[1] A[2]

b c a
A[0] A[1] A[2]

c b a
A[0] A[1] A[2]

c b a
A[0] A[1] A[2]

b c a
A[0] A[1] A[2]

b < c b > c

b a c
A[0] A[1] A[2]

a < c a > c

a b c
A[0] A[1] A[2]

a c b
A[0] A[1] A[2]

c a b
A[0] A[1] A[2]

a c b
A[0] A[1] A[2]

c a b
A[0] A[1] A[2]

c a b
A[0] A[1] A[2]

a c b
A[0] A[1] A[2]

a < c a > c

a b c
A[0] A[1] A[2]

b < c b > c

a < b a > b

Every valid output (??????) must be a leaf
Some decision tree completely represents the execution of any
algorithm that solves this problem
The algorithm must get to a leaf before stopping

We are interested in the worst case # of comparisons. So, we want to
know how long the longest path is (e.g. what is the height of the tree).

A single comparison can rule out (at most) ??????? output.
We begin with ???? possibilities and each comparison rules out ??????.
So, the minimum length of the longest path is ????

The Main Event! 7

Filling In The Blanks
a b c

A[0] A[1] A[2]

a c b
A[0] A[1] A[2]

b a c
A[0] A[1] A[2]

b c a
A[0] A[1] A[2]

c a b
A[0] A[1] A[2]

c b a
A[0] A[1] A[2]

b a c
A[0] A[1] A[2]

b c a
A[0] A[1] A[2]

c b a
A[0] A[1] A[2]

b c a
A[0] A[1] A[2]

c b a
A[0] A[1] A[2]

c b a
A[0] A[1] A[2]

b c a
A[0] A[1] A[2]

b < c b > c

b a c
A[0] A[1] A[2]

a < c a > c

a b c
A[0] A[1] A[2]

a c b
A[0] A[1] A[2]

c a b
A[0] A[1] A[2]

a c b
A[0] A[1] A[2]

c a b
A[0] A[1] A[2]

c a b
A[0] A[1] A[2]

a c b
A[0] A[1] A[2]

a < c a > c

a b c
A[0] A[1] A[2]

b < c b > c

a < b a > b

What are the outputs?
The outputs are permutations of the input:

abc, acb, bac, bca, cab, cba
How many of them are there?

There are n! permutations of n items:

n choices n−1 choices n−2 choices
. . .

1 choice
How many outputs does each comparison rule out (minimum)?

Every output either goes into the left or the right side.
So, at least one side has half of the elements.

The Main Event! 8

Lower Bound for Sorting
a b c

A[0] A[1] A[2]

a c b
A[0] A[1] A[2]

b a c
A[0] A[1] A[2]

b c a
A[0] A[1] A[2]

c a b
A[0] A[1] A[2]

c b a
A[0] A[1] A[2]

b a c
A[0] A[1] A[2]

b c a
A[0] A[1] A[2]

c b a
A[0] A[1] A[2]

b c a
A[0] A[1] A[2]

c b a
A[0] A[1] A[2]

c b a
A[0] A[1] A[2]

b c a
A[0] A[1] A[2]

b < c b > c

b a c
A[0] A[1] A[2]

a < c a > c

a b c
A[0] A[1] A[2]

a c b
A[0] A[1] A[2]

c a b
A[0] A[1] A[2]

a c b
A[0] A[1] A[2]

c a b
A[0] A[1] A[2]

c a b
A[0] A[1] A[2]

a c b
A[0] A[1] A[2]

a < c a > c

a b c
A[0] A[1] A[2]

b < c b > c

a < b a > b

Every valid output (permutations of A) must be a leaf
Some decision tree completely represents the execution of any
algorithm that solves this problem
The algorithm must get to a leaf before stopping

We are interested in the worst case # of comparisons (height of the tree).
A single comparison can rule out (at most) half of the outputs.

We begin with n! possibilities and each comparison rules out at most half
of the remaining ones. So, the minimum length of the longest path is:

lg(n!).

The Main Event! 9

(Asymptotic) Lower Bound for Sorting
We’ve now shown that the comparison sorting problem is Ω(lg(n!)). It
turns out that this is actually Ω(n lg(n)):
lg(n!) = lg(n(n−1)(n−2)...1) [Def. of n!]

= lg(n)+ lg(n−1)+ . . . lg(n
2
)+ lg(n

2
−1)+ . . . lg(1) [Prop. of Logs]

≥ lg(n)+ lg(n−1)+ ...+ lg(n
2
)

≥ (n
2
) lg(n

2
)

= (n
2
)(lgn− lg2)

= n lgn
2
− n

2∈Ω(n lg(n))
It follows that Ω(n lg(n)) is a lower bound for the sorting problem!

Spectrum of Sorting 10

Simple:O(n2) Fancy:O(n lgn) Specialized:O(n)
Insertion Sort
Selection Sort

. . .

Heap Sort
Merge Sort

. . .

Counting Sort
Radix Sort

. . .
There are a lot of comparison based sorts, but they can’t break the lower
bound of Ω(n lgn)

But what about algorithm that don’t use comparisons!



Bounded Set Returns! 11

Remember the assumption we made for the BoundedSet ADT?

BoundedSet ADT
Data Set of numerical keys where 0 ≤ k ≤B for some B ∈N
insert(key) Adds key to set
find(key) Returns true if key is in the set and false otherwise
delete(key) Deletes key from the set

The only difference between Set and BoundedSet is that BoundedSet
comes with an upper bound of B.

Suppose we have integers between 1 and B (just like BoundedSet). How
could we go about sorting them?

Counting Sort
Create an int array of size B

Loop through the elements and increment their counts
Then, loop through the array and output each element found

Counting Sort 12

Counting Sort
Assuming all data is ints between 1 and B:

Create an int array of size B

Loop through the elements and increment their counts
Then, loop through the array and output each element found

Example
Input: 5 1 3 3 2 1 3 4 5 1 1 (B = 5)

Initialize the array:
A[0] A[1] A[2] A[3] A[4]

Loop through the elements: 4 1 3 1 2
A[0] A[1] A[2] A[3] A[4]

Loop through the indices
Output: 1 1 1 1 2 3 3 3 4 5 5

Counting Sort Analysis 13

Counting Sort
Assuming all data is ints between 1 and B:

Create an int array of size B

Loop through the elements and increment their counts
Then, loop through the array and output each element found

Analysis
Best Case? O(n+B)
Worst Case? O(n+B)
Why doesn’t the sorting lower bound apply?
It’s not a comparison sort! We actually didn’t use comparisons at all!
When should we use Counting Sort?

We should use Counting Sort when n ≈ B.

Radix Sort 14

Radix Sort
Choose a “number” representation (e.g.(100)10 = (1100100)2 = (d)128)
For each digit from least significant to most significant, do a stable sort
(why stable?)

Usually for the sorting step, we use counting sort.

Example
4 7 8
5 3 7
0 0 9
7 2 1
0 0 3
0 3 8
1 4 3
0 6 7

Sort YellowÐÐÐÐÐÐ→

7 2 1
0 0 3
1 4 3
5 3 7
0 6 7
4 7 8
0 3 8
0 0 9

Sort YellowÐÐÐÐÐÐ→

0 0 3
0 0 9
7 2 1
5 3 7
0 3 8
1 4 3
0 6 7
4 7 8

Sort YellowÐÐÐÐÐÐ→

0 0 3
0 0 9
0 3 8
0 6 7
1 4 3
4 7 8
5 3 7
7 2 1

Counting Sort: Analysis 15

Radix Sort
Choose a “number” representation (e.g.(100)10 = (1100100)2 = (d)128). Say base B.
For each digit from least significant to most significant, do a stable
COUNTING sort. Say there are P passes.

Analysis
Best Case? O(P(B+n))
Worst Case? O(P(B+n))
Should we use radix sort?

Consider Strings of English letters up to length 15:
Radix Sort will take 15(52 + n)
For n < 33,000, n lgn wins.

Applications and Related Problems 16

Possibly the most useful application of sorting is as a form of
pre-processing. We sort the input in O(n lgn) and then solve the actual
problem using the sorted data. (e.g. if we expect to do more than O(n)
finds, the sorting step is worth it)

Big CS Idea!
To make a repeated operation easier, do an expensive pre-processing
step once. You saw this with DFAs and String Matching in CSE 311 as
well!



Extra Slides 17

The remaining slides are kind of neat and interesting, but we won’t cover
them in lecture. Feel free to look at them on your own.

The median problem has already come up. Let’s explore it more!

What is SELECT? 18

SELECT is the computational problem with the following requirements:

Inputs
An array A of E data of length L and a number 0 ≤ k < L.
A consistent, total ordering on all elements of type E:

compare(a, b)

Post-Conditions
The array remains unchanged.
Let B be the ordering that SORT would return. We return B(k).

An Algorithm to Solve SELECT 19

Solving SELECT(k)
Copy A into B
Sort B
Return (B(k)

Awesome, except this is O(n lgn)
Another idea, instead of “sorting”, only sort the parts we need.

QuickSort: A Reminder
Choose a pivot in A: p

Partition A into two arrays: SMALLER and LARGER
QuickSort SMALLER.
QuickSort LARGER.
SMALLER + [p] + LARGER is a sorted array.

Idea: To find the k-th element, do we need to recurse on both sides?

An Algorithm to Solve SELECT 20

QuickSelect(A, k)
Choose a pivot in A: p

Partition A into two arrays: SMALLER and LARGER
Since we know how big SMALLER and LARGER are, we know the final
index of p. Call this x.
If k = x, return p.
If k < x, return QuickSelect(SMALLER, k)
If k > x, return QuickSelect(LARGER, k−x)

Analysis
Best Case: T(n) = T(n/2)+cn (So, O(n))
Worst Case: T(n) = T(n−1)+cn (So, O(n2))
(Average Case is O(n))

QuickSelect 21

median = 4th

20 50 70 10 60 40 30
A[0] A[1] A[2] A[3] A[4] A[5] A[6]

20
A[0]

50 70 10 60 40 30
A[1] A[2] A[3] A[4] A[5] A[6]

50 70 60 40 30
A[2] A[3] A[4] A[5] A[6]

50
A[2]

70 60 40 30
A[3] A[4] A[5] A[6]

50 ?? ??
A[4] A[5] A[6]

40 30
A[2] A[3]

40
A[2]

30
A[3]

50 ?? ??
A[4] A[5] A[6]

40
A[3]

?? 20 30
A[0] A[1] A[2]

Choose Pivot

median = 2nd

Choose Pivot

?? 20
A[0] A[1]

median = 4−2 = 2nd

Choose Pivot

Deterministic QuickSelect (Median-of-Medians) 22

Median-of-Medians
Split A into g = n/5 groups of 5 elements.
Sort each group and find the medians: m1,m2, . . . ,mn/5
Find p: the median of the medians (recursively. . . )
Separate the input into two groups SMALLER and LARGER and
recurse on the appropriate piece

This algorithm is “basically” QuickSelect, but with a special pivot.

Analysis
The key to this algorithm is that whichever side we recurse on is at least
3/10 of the input. Here’s why:

Consider SMALLER. We know that at least g/2 of the groups have a
median ≥ p. Of the 5 elements in each of these groups, since the
median is ≥ p, 3 of them are ≥ p (possibly including the median).
Putting this together, we have 3(g/2) = 3((n/5)/2) = 3n/10 elements≥ p. This means we know we will discard at least this many. So, the
maximum number of elements we could recurse on is 7n/10.
The other case is symmetric.



Deterministic QuickSelect (Solving the Recurrence) 23

Median-of-Medians
Split A into g = n/5 groups of 5 elements.
Sort each group and find the medians: m1,m2, . . . ,mn/5
Find p: the median of the medians (we’re gonna do this
recursively. . . )
Separate the input into two groups SMALLER and LARGER and
recurse on the appropriate piece

Solving The Recurrence
So, putting all this together gives us the recurrence

T(n) ≤O(5lg5)(n
5
)+T (n

5
)+T (7n

10
)

= cn +T ( 2n
10
)+T ( 7n

10
)

= cn +( 2n
10
+T (2( 2n

10
))+T (7( 2n

10
)))

+( 7n
10
+T (2( 7n

10
))+T (7( 7n

10
)))

= cn + 9n
10
+T ( 22n

102
)+2T (7×2×( n

102
))+T ( 72n

102
)

Deterministic QuickSelect (Solving the Recurrence) 24

Solving The Recurrence
So, putting all this together gives us the recurrence

T(n) ≤O(5lg5)(n
5
)+T (n

5
)+T (7n

10
)

= cn +T ( 2n
10
)+T ( 7n

10
)

= cn +( 2n
10
+T (2( 2n

10
))+T (7( 2n

10
)))

+( 7n
10
+T (2( 7n

10
))+T (7( 7n

10
)))

= cn + 9n
10
+T ( 22n

102
)+2T (7×2×( n

102
))+T ( 72n

102
)

≤ cn + 9n
10
+ 22 +2(7×2)+72

102
+ . . .

= cn + 9n
10
+ 92n

102
+ . . .

= cn (∞∑
i=0

9i10i) = cn( 1
1−9/10

) = 10cn

Whoo hoo!


