

The Main Event!

(Asymptotic) Lower Bound for Sorting

We've now shown that the comparison sorting problem is $\Omega(\lg(n!))$. It turns out that this is actually $\Omega(n\lg(n))$:

Ig(n!) = Ig(n(n-1)(n-2)...1) [Def. of n!]
= Ig(n) + Ig(n-1) + ... Ig(
$$\frac{n}{2}$$
) + Ig($\frac{n}{2}$ - 1) + ... Ig(1) [Prop. of Logs]
 $\ge Ig(n) + Ig(n-1) + ... + Ig($\frac{n}{2}$)
 $\ge (\frac{n}{2})Ig(\frac{n}{2})$
 $= (\frac{n}{2})(Ign - Ig2)$
 $= \frac{nIgn}{2} - \frac{n}{2}$
 $\in \Omega(nIg(n))$
It follows that $\Omega(nIg(n))$ is a lower bound for the sorting problem!$

Bounded Set Returns!

Remember the assumption we made for the BoundedSet ADT?

BoundedSet ADT

Data	Set of numerical keys where $0 \le k \le B$ for some $B \in \mathbb{N}$
insert(key)	Adds key to set
find(key)	Returns true if key is in the set and false otherwise
delete(key)	Deletes key from the set

The only difference between Set and BoundedSet is that BoundedSet comes with an upper bound of B.

Suppose we have integers between 1 and B (just like BoundedSet). How could we go about sorting them?

Counting Sort

- Create an int array of size B
- Loop through the elements and increment their counts
- Then, loop through the array and output each element found

Counting Sort

Example

Radix Sort

Radix Sort

Example

47<mark>8</mark>

53<mark>7</mark>

009

721

003

038 143

067

(why stable?)

Sort Yellow

Counting Sort

- Assuming all data is ints between 1 and B:
- Create an int array of size B
- Loop through the elements and increment their counts
- Then, loop through the array and output each element found

4 1 3 1 A[0] A[1] A[2] A[3]

Input: 51332134511 (*B* = 5)

- Initialize the array:
- Loop through the elements:
- Loop through the indices

Choose a "number" representation (e.g. $(100)_10 = (1100100)_2 = (d)_{128})$

Usually for the sorting step, we use counting sort.

7<mark>2</mark>1

003

1<mark>4</mark>3

537

067

4<mark>7</mark>8

038

009

Output: 11112333455

Counting Sort Analysis

13

15

Counting Sort

Assuming all data is ints between 1 and B:

- Create an int array of size B
- Loop through the elements and increment their counts
- Then, loop through the array and output each element found

Analysis

Best Case?

Worst Case?

 $\mathcal{O}(n+B)$

 $\mathcal{O}(n+B)$

- Why doesn't the sorting lower bound apply? It's not a comparison sort! We actually didn't use comparisons at all!
- When should we use Counting Sort?

We should use Counting Sort when $n \approx B$.

Counting Sort: Analysis

Radix Sort

- Choose a "number" representation (e.g.
- $(100)_10 = (1100100)_2 = (d)_{128}$. Say base B.
- For each digit from least significant to most significant, do a stable COUNTING sort. Say there are P passes.

Analysis

Best Case?

Worst Case?

 $\mathcal{O}(P(B+n))$

- $\mathcal{O}(P(B+n))$
- Should we use radix sort?
 - Consider Strings of English letters up to length 15: Radix Sort will take 15(52 + n)

 - For *n* < 33,000, *n*1g*n* wins.

Applications and Related Problems

16

12

14

003

009

038

067

143

478

537

721

Possibly the most useful application of sorting is as a form of **pre-processing**. We sort the input in $O(n \lg n)$ and then solve the actual problem using the sorted data. (e.g. if we expect to do more than $\mathcal{O}(n)$ finds, the sorting step is worth it)

For each digit from least significant to most significant, do a stable sort

Sort Yellow

003

009

721

537

038

143

067

478

Sort Yellow

Big CS Idea!

To make a repeated operation easier, do an expensive pre-processing step once. You saw this with DFAs and String Matching in CSE 311 as well!

SELECT is the computational problem with the following requirements:

18

Inputs

- An array A of E data of length L and a number $0 \le k < L$.
- A consistent, total ordering on all elements of type E:
 - compare(a, b)

Post-Conditions

- The array remains unchanged.
- Let B be the ordering that **SORT** would return. We return B(k).

eterministic QuickSelect (Median-of-Medians)	2
Median-of-Medians	
Split A into $g = n/5$ groups of 5 elements.	
Sort each group and find the medians: $m_1, m_2, \ldots, m_{n/5}$	
■ Find <i>p</i> : the median of the medians (recursively)	
 Separate the input into two groups SMALLER and LARGER and recurse on the appropriate piece 	
This algorithm is "basically" $\ensuremath{\textbf{QuickSelect}}$, but with a special pivot.	
Analysis	
The key to this algorithm is that whichever side we recurse on is at least $3/10$ of the input. Here's why:	:
■ Consider SMALLER. We know that at least g/2 of the groups have a median ≥ p. Of the 5 elements in each of these groups, since the median is ≥ p, 3 of them are ≥ p (possibly including the median).	

- median is $\geq p$, 3 of them are $\geq p$ (possibly including the median). Putting this together, we have 3(g/2) = 3((n/5)/2) = 3n/10 elements $\geq p$. This means we **know** we will discard at least this many. So, the maximum number of elements we could recurse on is 7n/10.
- The other case is symmetric.

Median-of-Medians

- Split A into g = n/5 groups of 5 elements.
- Sort each group and find the medians: $m_1, m_2, \ldots, m_{n/5}$
- Find *p*: the median of the medians (we're gonna do this recursively...)
- Separate the input into two groups SMALLER and LARGER and recurse on the appropriate piece

Solving The Recurrence

So, putting all this together gives us the recurrence

$$\begin{split} T(n) &\leq \mathcal{O}(5\lg 5) \left(\frac{n}{5}\right) + T\left(\frac{n}{10}\right) + T\left(\frac{n}{10}\right) \\ &= cn + T\left(\frac{2n}{10}\right) + T\left(\frac{7n}{10}\right) \\ &= cn + \left(\frac{2n}{10} + T\left(2\left(\frac{2n}{10}\right)\right)\right) + T\left(7\left(\frac{2n}{10}\right)\right) \right) \\ &+ \left(\frac{7n}{10} + T\left(2\left(\frac{7n}{10}\right)\right) + T\left(7\left(\frac{7n}{10}\right)\right) \right) \\ &= cn + \frac{9n}{10} + T\left(\frac{2^2n}{10^2}\right) + 2T\left(7 \times 2 \times \left(\frac{n}{10^2}\right)\right) + T\left(\frac{7^2n}{10^2}\right) \end{split}$$

Deterministic QuickSelect (Solving the Recurrence) 24 Solving The Recurrence So, putting all this together gives us the recurrence $T(n) \leq \mathcal{O}(5\lg 5)\left(\frac{n}{5}\right) + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right)$ $= cn + T\left(\frac{2n}{10}\right) + T\left(\frac{7n}{10}\right)$ $= cn + \left(\frac{2n}{10} + T\left(2\left(\frac{2n}{10}\right)\right) + T\left(7\left(\frac{2n}{10}\right)\right)\right)$ $+ \left(\frac{7n}{10} + T\left(2\left(\frac{7n}{10}\right)\right) + T\left(7\left(\frac{7n}{10}\right)\right)\right)$ $= cn + \frac{9n}{10} + T\left(\frac{2^2n}{10^2}\right) + 2T\left(7 \times 2 \times \left(\frac{n}{10^2}\right)\right) + T\left(\frac{7^2n}{10^2}\right)$ $\leq cn + \frac{9n}{10} + \frac{2^2 + 27 \times 21 + 7^2}{10^2} + \dots$ $= cn + \frac{9n}{10} + \frac{9^2n}{10^2} + \dots$ $= cn \left(\sum_{l=0}^{\infty} 9^{l} 10^{l}\right) = cn\left(\frac{1}{1-9/10}\right) = 10cn$ Whoo hoo!