**Adam Blank** Autumn 2015 Lecture 16

**Data Abstractions** 

# CSE 332: Data Abstractions

# More Parallel Primitives and Parallel Sorting



# Outline

1 More Parallel Primitives

2 Parallel Sorting

# Maps and Reductions

Reductions

**INPUT:** An array

**OUTPUT:** A combination of the array by an associative operation The general name for this type of problem is a reduction. Examples include: max, min, has-a, first, count, sorted

# Maps

INPUT: An array

**OUTPUT:** Apply a function to every element of that array The general name for this type of problem is a map. You can do this with any function, because the array elements are independent.

Today, we'll add in two more:

- Scan
- Pack (or filter)

As we'll see, both of these are quite a bit less intuitive in parallel than map and reduce.

# Scan and Parallel Prefix-Sum

Scan

Suppose we have an associative operation  $\oplus$  and an array a:

Then, scan(a) returns an array of "partial sums" (using ⊕):

scan(a):  $a_0 \mid a_0 \oplus a_1 \mid a_0 \oplus a_1 \oplus a_2 \mid a_0 \oplus a_1 \oplus a_2 \oplus a_3$ 

It's hard to see at first, but this is actually a really powerful tool. It gives us a "partial trace" of the operation as we apply it to the array (for free).

# No Seriously

splitting, load balancing, quicksort, line drawing, radix sort, designing binary adders, polynomial interpolation, decoding gray codes

# Sequential Scan (with $\oplus = +$ )

For the sake of being clear, we'll discuss scan with  $\oplus$  = +. That is, "prefix sums" of an array":

### Example (Prefix Sum)

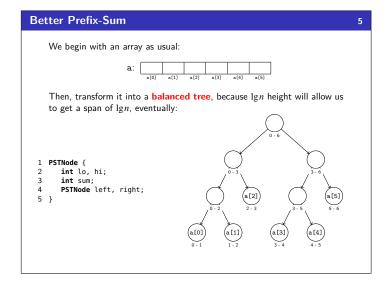


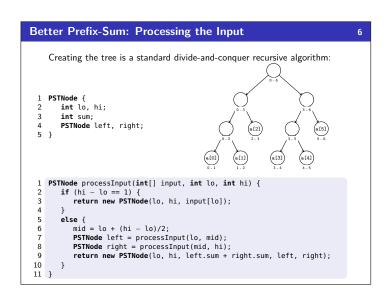
# Sequential Code

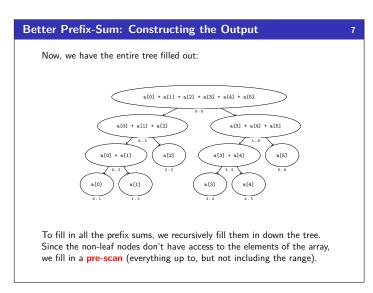
```
int[] prefixSum(int[] input) {
  int[] output = new int[input.length];
  int sum = 0;
  for (int i = 0; i < input.length; i++) {</pre>
                   sum += input[i];
output[i] = sum;
            return output;
9 }
```

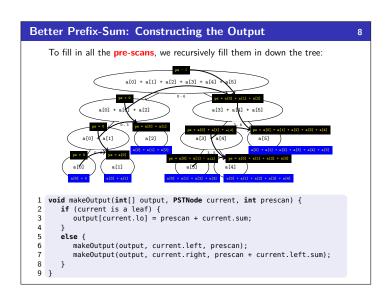
If you have a really good memory, you'll remember that on the very first day of lecture, we discussed a very similar problem.

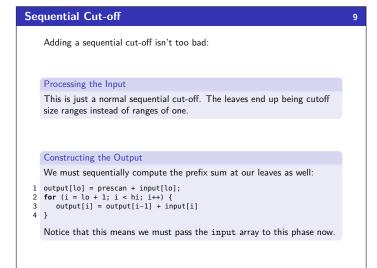
# Sequential Prefix-Sum Sequential Code 1 int[] prefixSum(int[] input) { int[] output = new int[input.length]; int sum = 0; for (int i = 0; i < input.length; i++) { sum += input[i];</pre> output[i] = sum; return output; 9 } **Bad News** This **algorithm** does not parallelize well. Step i needs the outputs from all the previous steps. This might as well be an algorithm on a linked list. So, what do we do? Come Up With A Better Algorithm! The solution here will be to add a "pre-processing step". This is essentially what we did in the first lecture.











# Another Primitive: Parallel Pack (or "filter")

n

Here the idea is that we'd like to filter the array given some predicate (e.g.,  $\leq$  7). More specifically:

# Pack/Filter

Suppose we have a function  $f: E \to boolean$  and an array a of type E:

Then, pack(a) returns an array of elements x for which f(x) = true. For example, if arr = [1, 3, 8, 6, 7, 2, 4, 9] and f(x) = x % 2 == 0, then pack(arr) = [8, 6, 2, 4].

The key to doing this in parallel is scan!

# Another Primitive: Parallel Pack (or "filter") Let f(x) = x % 2 == 0. Parallel Pack input: $\frac{1}{a(0)} \frac{3}{a(1)} \frac{8}{a(2)} \frac{7}{a(3)} \frac{4}{a(4)} \frac{9}{a(5)} \frac{1}{a(6)} \frac{1}{a(7)}$ I Use a map to compute a bitset for f(x) applied to each element bitset: $\frac{0}{b(0)} \frac{1}{b(1)} \frac{1}{b(2)} \frac{1}{b(3)} \frac{1}{b(4)} \frac{1}{b(5)} \frac{1}{b(6)} \frac{0}{b(7)}$ 2 Do a scan on the bit vector with $\oplus = +$ : bitsum: $\frac{0}{c(0)} \frac{1}{c(1)} \frac{1}{c(2)} \frac{2}{c(3)} \frac{3}{c(4)} \frac{4}{c(5)} \frac{4}{c(5)} \frac{1}{c(5)}$ E Do a map on the bit sum to produce the output: output: $\frac{8}{6} \frac{6}{2} \frac{2}{4} \frac{4}{a(0)}$ 1 output = new E[bitsum[n-1]]; 2 for (i=0; i < input.length; i++) { 3 if (bitset[i] == 1) { 4 output[bitsum[i] - 1] = input[i]; 5 } 6 }

# More on Pack

12

- We can combine the first two passes into one (just use a different base case for prefix sum)
- We can also combine the third step into the second part of prefix sum
- lacktriangle Overall:  $\mathcal{O}(n)$  work and  $\mathcal{O}(\lg n)$  span. (Why?)

We can use scan and pack in all kinds of situations!

```
Parallel Quicksort

1 int[] quicksort(int[] arr) {
2 int pivot = choosePivot();
3 int[] left = filter(assThan(arr, pivot);
```

```
int[]qurssit(int[] arr);
int pivot = choosePivot();
int[] left = filterLessThan(arr, pivot);
int[] right = filterGreaterThan(arr, pivot);
return quicksort(left) + quicksort(right);
6 }
```

# Do The Recursive Calls in Parallel

Assuming a good pivot, we have:

$$\operatorname{work}(n) = \begin{cases} \mathcal{O}(1) & \text{if } n = 1\\ 2\operatorname{work}(n/2) + \mathcal{O}(n) & \text{otherwise} \end{cases}$$

and

$$\operatorname{span}(n) = \begin{cases} \mathcal{O}(1) & \text{if } n = 1 \\ \max(\operatorname{span}(n/2), \operatorname{span}(n/2)) + \mathcal{O}(n) & \text{otherwise} \end{cases}$$

These solve to  $\mathcal{O}(n \lg n)$  and  $\mathcal{O}(n)$ . So, the parallelism is  $\mathcal{O}(\lg n)$ .

# Parallel Quicksort

14

```
int[] quicksort(int[] arr) {
    int pivot = choosePivot();
    int[] left = filterLessThan(arr, pivot);
    int[] right = filterGreaterThan(arr, pivot);
    return quicksort(left) + quicksort(right);
}
```

# Do The Partition in Parallel

The partition step is just two filters or packs. Each pack is  $\mathcal{O}(n)$  work, but  $\mathcal{O}(\lg n)$  span! So, our new span recurrence is:

$$\operatorname{span}(n) = \begin{cases} \mathcal{O}(1) & \text{if } n = 1\\ \max(\operatorname{span}(n/2), \operatorname{span}(n/2)) + \mathcal{O}(\lg n) & \text{otherwise} \end{cases}$$

Master Theorem says this is  $\mathcal{O}(\lg^2 n)$  which is neat!

# Parallel Mergesort

15

```
int[] mergesort(int[] arr) {
   int[] left = getLeftHalf();
   int[] right = getRightHalf();
   return merge(mergesort(left), mergesort(right));
}
```

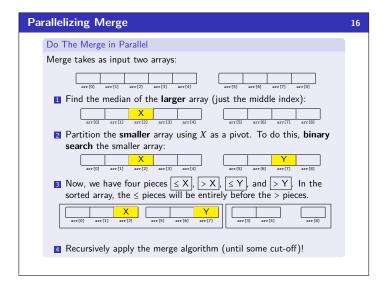
#### Do The Recursive Calls in Parallel

This will get us the same work and span we got for quicksort when we did this:

- work  $(n) = \mathcal{O}(n \lg n)$
- span  $(n) = \mathcal{O}(n)$
- Parallelism is  $\mathcal{O}(\lg n)$

Now, let's try to parallelize the merge part.

As always, when we want to parallelize something, we can turn it into a divide-and-conquer algorithm.



# Parallel Mergesort Analysis

18

Now, we calculate the work and span of the entire parallel mergesort.

# Putting It Together

$$\operatorname{work}(n) = \mathcal{O}(n \lg n)$$

$$\operatorname{span}\left(n\right) \leq \begin{cases} \mathcal{O}(1) & \text{if } n = 1\\ \operatorname{span}\left(n/2\right) + \mathcal{O}(\lg^2 n) & \text{otherwise} \end{cases}$$

This works out to span  $(n) = \mathcal{O}(\lg^3 n)$ .

This isn't quite as much parallelism as quicksort, but this one is a worst case guarantee!

# **Parallel Mergesort Analysis**

17

First, we analyze just the parallel merge:

# Parallel Merge Analysis

The non-recursive work is  $\mathcal{O}(1) + \mathcal{O}(\lg n)$  to find the splits.

The  $worst\ case$  is when we split the bigger array in half and the smaller array is all on the left (or all on the right). In other words:

$$\operatorname{work}(n) \leq \begin{cases} \mathcal{O}(1) & \text{if } n = 1\\ \operatorname{work}(3n/4) + \operatorname{work}(n/4) + \mathcal{O}(\lg n) & \text{otherwise} \end{cases}$$

and

$$\operatorname{span}(n) \leq \begin{cases} \mathcal{O}(1) & \text{if } n = 1 \\ \max(\operatorname{span}(3n/4) + \operatorname{span}(n/4)) + \mathcal{O}(\lg n) & \text{otherwise} \end{cases}$$

These solve to work  $(n) = \mathcal{O}(n)$  and span  $(n) = \mathcal{O}(\lg^2 n)$ .