
Adam Blank Autumn 2015Lecture 16

CSE332
Data Abstractions

CSE 332: Data Abstractions

More Parallel Primitives
and Parallel Sorting

Outline

1 More Parallel Primitives

2 Parallel Sorting

Maps and Reductions 1

Reductions
INPUT: An array
OUTPUT: A combination of the array by an associative operation
The general name for this type of problem is a reduction. Examples
include: max, min, has-a, first, count, sorted

Maps
INPUT: An array
OUTPUT: Apply a function to every element of that array
The general name for this type of problem is a map. You can do this
with any function, because the array elements are independent.

Today, we’ll add in two more:
Scan
Pack (or filter)

As we’ll see, both of these are quite a bit less intuitive in parallel than
map and reduce.

Scan and Parallel Prefix-Sum 2

Scan
Suppose we have an associative operation ⊕ and an array a:

a: a0 a1 a2 a3
a[0] a[1] a[2] a[3]

Then, scan(a) returns an array of “partial sums” (using ⊕):

scan(a): a0 a0⊕a1 a0⊕a1⊕a2 a0⊕a1⊕a2⊕a3
b[0] b[1] b[2] b[3]

It’s hard to see at first, but this is actually a really powerful tool. It gives
us a “partial trace” of the operation as we apply it to the array (for free).

No Seriously
splitting, load balancing, quicksort, line drawing, radix sort, designing
binary adders, polynomial interpolation, decoding gray codes

Sequential Scan (with ⊕ = +) 3

For the sake of being clear, we’ll discuss scan with ⊕ = +.
That is, “prefix sums” of an array“:

Example (Prefix Sum)
a: 5 1 3 4 2

a[0] a[1] a[2] a[3] a[4]

scan(a): 5 6 9 13 15
b[0] b[1] b[2] b[3] b[4]

Sequential Code
1 int[] prefixSum(int[] input) {
2 int[] output = new int[input.length];
3 int sum = 0;
4 for (int i = 0; i < input.length; i++) {
5 sum += input[i];
6 output[i] = sum;
7 }
8 return output;
9 }

If you have a really good memory, you’ll remember that on the very first
day of lecture, we discussed a very similar problem.



Sequential Prefix-Sum 4

Sequential Code
1 int[] prefixSum(int[] input) {
2 int[] output = new int[input.length];
3 int sum = 0;
4 for (int i = 0; i < input.length; i++) {
5 sum += input[i];
6 output[i] = sum;
7 }
8 return output;
9 }

Bad News
This algorithm does not parallelize well. Step i needs the outputs from
all the previous steps. This might as well be an algorithm on a linked list.

So, what do we do?

Come Up With A Better Algorithm!
The solution here will be to add a “pre-processing step”. This is
essentially what we did in the first lecture.

Better Prefix-Sum 5

We begin with an array as usual:

a:
a[0] a[1] a[2] a[3] a[4] a[5]

Then, transform it into a balanced tree, because lgn height will allow us
to get a span of lgn, eventually:

1 PSTNode {
2 int lo, hi;
3 int sum;
4 PSTNode left, right;
5 }

0 - 6

0 - 3

0 - 2

a[0]

0 - 1

a[1]

1 - 2

a[2]

2 - 3

3 - 6

3 - 5

a[3]

3 - 4

a[4]

4 - 5

a[5]

5 - 6

Better Prefix-Sum: Processing the Input 6

Creating the tree is a standard divide-and-conquer recursive algorithm:

1 PSTNode {
2 int lo, hi;
3 int sum;
4 PSTNode left, right;
5 }

0 - 6

0 - 3

0 - 2

a[0]

0 - 1

a[1]

1 - 2

a[2]

2 - 3

3 - 6

3 - 5

a[3]

3 - 4

a[4]

4 - 5

a[5]

5 - 6

1 PSTNode processInput(int[] input, int lo, int hi) {
2 if (hi − lo == 1) {
3 return new PSTNode(lo, hi, input[lo]);
4 }
5 else {
6 mid = lo + (hi − lo)/2;
7 PSTNode left = processInput(lo, mid);
8 PSTNode right = processInput(mid, hi);
9 return new PSTNode(lo, hi, left.sum + right.sum, left, right);

10 }
11 }

Better Prefix-Sum: Constructing the Output 7

Now, we have the entire tree filled out:

a[0] + a[1] + a[2] + a[3] + a[4] + a[5]

0 - 6

a[0] + a[1] + a[2]

0 - 3

a[0] + a[1]

0 - 2

a[0]

0 - 1

a[1]

1 - 2

a[2]

2 - 3

a[3] + a[4] + a[5]

3 - 6

a[3] + a[4]

3 - 5

a[3]

3 - 4

a[4]

4 - 5

a[5]

5 - 6

To fill in all the prefix sums, we recursively fill them in down the tree.
Since the non-leaf nodes don’t have access to the elements of the array,
we fill in a pre-scan (everything up to, but not including the range).

Better Prefix-Sum: Constructing the Output 8

To fill in all the pre-scans, we recursively fill them in down the tree:

a[0] + a[1] + a[2] + a[3] + a[4] + a[5]

0 - 6

a[0] + a[1] + a[2]

0 - 3

a[0] + a[1]

0 - 2

a[0]

0 - 1

a[1]

1 - 2

a[2]

2 - 3

a[3] + a[4] + a[5]

3 - 6

a[3] + a[4]

3 - 5

a[3]

3 - 4

a[4]

4 - 5

a[5]

5 - 6

ps = 0

ps = 0

ps = 0

ps = 0

a[0] + 0

ps = a[0]

a[0] + a[1]

ps = a[0] + a[1]

a[0] + a[1] + a[2]

ps = a[0] + a[1] + a[2]

ps = a[0] + a[1] + a[2]

ps = a[0] + a[1] + a[2]

a[0] + a[1] + a[2] + a[3]

ps = a[0] + a[1] + a[2] + a[3]

a[0] + a[1] + a[2] + a[3] + a[4]

ps = a[0] + a[1] + a[2] + a[3] + a[4]

a[0] + a[1] + a[2] + a[3] + a[4] + a[5]

1 void makeOutput(int[] output, PSTNode current, int prescan) {
2 if (current is a leaf) {
3 output[current.lo] = prescan + current.sum;
4 }
5 else {
6 makeOutput(output, current.left, prescan);
7 makeOutput(output, current.right, prescan + current.left.sum);
8 }
9 }

Sequential Cut-off 9

Adding a sequential cut-off isn’t too bad:

Processing the Input
This is just a normal sequential cut-off. The leaves end up being cutoff
size ranges instead of ranges of one.

Constructing the Output
We must sequentially compute the prefix sum at our leaves as well:

1 output[lo] = prescan + input[lo];
2 for (i = lo + 1; i < hi; i++) {
3 output[i] = output[i−1] + input[i]
4 }

Notice that this means we must pass the input array to this phase now.



Another Primitive: Parallel Pack (or “filter”) 10

Here the idea is that we’d like to filter the array given some predicate
(e.g., ≤ 7). More specifically:

Pack/Filter
Suppose we have a function f ∶ E→ boolean and an array a of type E:

a: a0 a1 a2 a3
a[0] a[1] a[2] a[3]

Then, pack(a) returns an array of elements x for which f (x) = true.
For example, if arr = [1, 3, 8, 6, 7, 2, 4, 9] and
f(x) = x % 2 == 0, then pack(arr) = [8, 6, 2, 4].

The key to doing this in parallel is scan!

Another Primitive: Parallel Pack (or “filter”) 11

Let f(x) = x % 2 == 0.
Parallel Pack

input: 1 3 8 6 7 2 4 9
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

1 Use a map to compute a bitset for f (x) applied to each element
bitset: 0 0 1 1 0 1 1 0

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7]

2 Do a scan on the bit vector with ⊕ = +:
bitsum: 0 0 1 2 2 3 4 4

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

3 Do a map on the bit sum to produce the output:
output: 8 6 2 4

d[0] d[1] d[2] d[3]

1 output = new E[bitsum[n−1]];
2 for (i=0; i < input.length; i++) {
3 if (bitset[i] == 1) {
4 output[bitsum[i] − 1] = input[i];
5 }
6 }

More on Pack 12

We can combine the first two passes into one (just use a different
base case for prefix sum)

We can also combine the third step into the second part of prefix
sum

Overall: O(n) work and O(lgn) span. (Why?)

We can use scan and pack in all kinds of situations!

Parallel Quicksort 13

1 int[] quicksort(int[] arr) {
2 int pivot = choosePivot();
3 int[] left = filterLessThan(arr, pivot);
4 int[] right = filterGreaterThan(arr, pivot);
5 return quicksort(left) + quicksort(right);
6 }

Do The Recursive Calls in Parallel
Assuming a good pivot, we have:

work(n) = ⎧⎪⎪⎨⎪⎪⎩
O(1) if n = 1
2work(n/2)+O(n) otherwise

and

span(n) = ⎧⎪⎪⎨⎪⎪⎩
O(1) if n = 1
max(span(n/2) ,span(n/2))+O(n) otherwise

These solve to O(n lgn) and O(n). So, the parallelism is O(lgn).

Parallel Quicksort 14

1 int[] quicksort(int[] arr) {
2 int pivot = choosePivot();
3 int[] left = filterLessThan(arr, pivot);
4 int[] right = filterGreaterThan(arr, pivot);
5 return quicksort(left) + quicksort(right);
6 }

Do The Partition in Parallel
The partition step is just two filters or packs. Each pack is O(n) work,
but O(lgn) span! So, our new span recurrence is:

span(n) = ⎧⎪⎪⎨⎪⎪⎩
O(1) if n = 1
max(span(n/2) ,span(n/2))+O(lgn) otherwise

Master Theorem says this is O(lg2 n) which is neat!

Parallel Mergesort 15

1 int[] mergesort(int[] arr) {
2 int[] left = getLeftHalf();
3 int[] right = getRightHalf();
4 return merge(mergesort(left), mergesort(right));
5 }

Do The Recursive Calls in Parallel
This will get us the same work and span we got for quicksort when we
did this:

work(n) = O(n lgn)
span(n) = O(n)
Parallelism is O(lgn)

Now, let’s try to parallelize the merge part.

As always, when we want to parallelize something, we can turn it into a
divide-and-conquer algorithm.



Parallelizing Merge 16

Do The Merge in Parallel
Merge takes as input two arrays:

arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7] arr[8]

1 Find the median of the larger array (just the middle index):
X

arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7] arr[8]

2 Partition the smaller array using X as a pivot. To do this, binary
search the smaller array:

X
arr[0] arr[1] arr[2] arr[3] arr[4]

Y
arr[5] arr[6] arr[7] arr[8]

3 Now, we have four pieces ≤ X , > X , ≤ Y , and > Y . In the
sorted array, the ≤ pieces will be entirely before the > pieces.

X
arr[0] arr[1] arr[2]

Y
arr[5] arr[6] arr[7] arr[3] arr[4] arr[8]

4 Recursively apply the merge algorithm (until some cut-off)!

Parallel Mergesort Analysis 17

First, we analyze just the parallel merge:

Parallel Merge Analysis
The non-recursive work is O(1)+O(lgn) to find the splits.

The worst case is when we split the bigger array in half and the smaller
array is all on the left (or all on the right). In other words:

work(n) ≤ ⎧⎪⎪⎨⎪⎪⎩
O(1) if n = 1
work(3n/4)+work(n/4)+O(lgn) otherwise

and

span(n) ≤ ⎧⎪⎪⎨⎪⎪⎩
O(1) if n = 1
max(span(3n/4)+ span(n/4))+O(lgn) otherwise

These solve to work(n) = O(n) and span(n) = O(lg2 n).

Parallel Mergesort Analysis 18

Now, we calculate the work and span of the entire parallel mergesort.

Putting It Together

work(n) = O(n lgn)
span(n) ≤ ⎧⎪⎪⎨⎪⎪⎩

O(1) if n = 1
span(n/2)+O(lg2 n) otherwise

This works out to span(n) = O(lg3 n).

This isn’t quite as much parallelism as quicksort, but this one is a worst
case guarantee!


