
Adam Blank Autumn 2015Lecture 23

CSE
332

Data Abstractions



CSE 332: Data Abstractions

Graphs 4:
Minimum Spanning Trees



Final Dijkstra’s Algorithm 1

1 dijkstra(G, source) {
2 dist = new Dictionary();
3 worklist = [];
4 for (v : V) {
5 if (v == source) { dist[v] = 0; }
6 else { dist[v] = ∞; }
7 worklist.add((v, dist[v]));
8 }
9

10 while (worklist.hasWork()) {
11 v = next();
12 for (u : v.neighbors()) {
13 dist[u] = min(dist[u], dist[v] + w(v, u));
14 worklist.decreaseKey(u, dist[u]);
15 }
16 }
17
18 return dist;
19 }



Final Dijkstra’s Algorithm 2

1 dijkstra(G, source) {
2 dist = new Dictionary();
3 worklist = [];
4 for (v : V) {
5 if (v == source) { dist[v] = 0; }
6 else { dist[v] = ∞; }
7 worklist.add((v, dist[v]));
8 }
9

10 while (worklist.hasWork()) {
11 v = next();
12 for (u : v.neighbors()) {
13 dist[u] = min(dist[u], dist[v] + w(v, u));
14 worklist.decreaseKey(u, dist[u]);
15 }
16 }
17
18 return dist;
19 }

What Does Dijkstra’s Algorithm Do Now?



Minimum Spanning Trees 3

Definition (Minimum Spanning Tree)
Given a graph G = (V,E), find a subgraph G′ = (V ′,E′) such that

G′ is a tree.
V =V ′ (G′ is spanning.)
∑

e ∈ E′
w(e) is minimized.

Example

a

b c d

fe

10

30 40

15

25

4520

35



What For? 4

Given a layout of houses, where should we place the phone lines to
minimize cost?

How can we design circuits to minimize the amount of wire?

Implementing efficient multiple constant multiplications

Minimizing the number of packets transmitted across a network

Machine learning (e.g., real-time face verification)

Graphics (e.g., image segmentation)



MST Example 5

MST Example
Find a Minimum Spanning Tree of this graph
Are there any others?
Come up with a simple algorithm to find MSTs

a b f

h

e

gc

d

9

1

3 2

12

7

10 13

4

4

255

25

MST Uniqueness
If a graph has all unique edges, there is a unique MST. Otherwise, there
might be multiple MSTs.



Back To Dijkstra’s Prim’s Algorithm 6

1 prim(G) {
2 conns = new Dictionary();
3 worklist = [];
4 for (v : V) {
5 conns[v] = null;
6 worklist.add((v, ∞));
7 }
8 while (worklist.hasWork()) {
9 v = next();

10 for (u : v.neighbors()) {
11 if (w(v, u) < w(conns[u], u)) {
12 conns[u] = v;
13 worklist.decreaseKey(
14 u, w(v, u)
15 );
16 }
17 }
18 }
19 return conns;
20 }

a

bc

d

e f

g

1

2

2

6

10

3

1

51

1

6 5

This really is almost identical to Dijkstra’s Algorithm! We build up an
MST by adding vertices to a “done set” and keeping track of what edge
got us there.

Do we have to use vertices? Can we use edges instead?



A Simple Algorithm to Find MSTs 7

Simple MST
1 findMST(G) {
2 mst = {};
3 for ((v, w) ∈ sorted(E)) {
4 foundV = foundW = false;
5 for ((a, b) ∈ mst) {
6 foundV |= (a == v) || (b == v);
7 foundW |= (a == w) || (b == w);
8 }
9 if (!foundV || !foundW) {

10 mst.add((v, w));
11 }
12 }
13 return mst;
14 }

Some Questions!
How many edges is the MST?
Every MST will have ∣V ∣−1 edges; one edge to include each vertex
What is the runtime of this algorithm? O(∣E ∣ lg(∣E ∣)+ ∣E ∣∣V ∣),
because sorting takes O(∣E ∣ lg(∣E ∣)), the MST has at worst O(∣V ∣)
edges, and we have to iterate through the MST ∣E ∣ times.
What is the slow operation of this algorithm? Checking if a vertex is
already in our MST is very slow here. Can we do better?



Disjoint Sets ADT 8

A disjoint sets data structure keeps track of multiple sets which do not
share any elements. Here’s the ADT:

UnionFind ADT

find(x) Returns a number representing the set that x is in.
union(x, y) Updates the sets so whatever sets x and y were in are now

considered the same sets.

Example
1 list = [1, 2, 3, 4, 5, 6];
2 UF uf = new UF(list); // State: {1}, {2}, {3}, {4}, {5}, {6}
3 uf.find(1); // Returns 1
4 uf.find(2); // Returns 2
5 uf.union(1, 2); // State: {1, 2}, {3}, {4}, {5}, {6}
6 uf.find(1); // Returns 1
7 uf.find(2); // Returns 1
8 uf.union(3, 5); // State: {1, 2}, {3, 5}, {4}, {6}
9 uf.union(1, 3); // State: {1, 2, 3, 5}, {4}, {6}

10 uf.find(3); // Returns 1
11 uf.find(6); // Returns 6



Kruskal’s Algorithm 9

Simple MST
1 kruskal(G) {
2 mst = {};
3 forest = new UnionFind(V);
4 for ((v, w) ∈ sorted(E)) {
5 if (forest.find(v) != forest.find(w)) {
6 mst.add((v, w));
7 forest.union(v, w);
8 }
9 }

10 return mst;
11 }

Forest

a

bc

d

e f

g

Graph

a

bc

d

e f

g

1

15

2

7

3

10

1

48

20

6 4



Kruskal’s Algorithm Correctness 10

Proving Correctness
To prove that Kruskal’s Algorithm is correct, we must prove:

1 The output is some spanning tree The output is some spanning
tree

2 The output has minimum weight

Kruskal’s Algorithm Outputs SOME Spanning Tree
We must show that the output, G′ is spanning, connected, and acyclic.

The algorithm adds an edge whenever one of its ends is not already
in the tree. This means that every vertex has an edge in the tree.
It’s acyclic because we check before adding an edge.
Connected?

The original graph is connected; there exists a path between u and v
Consider the first edge that we look at which is on some path
between u and v.
Since we haven’t previously considered any edge on any path
between u and v, it must be the case that u and v are in distinct sets
in the disjoint sets data structure. So, we add that edge.

Since there is a path between every u and v in the graph in G′, G′ is
connected by definition.



Kruskal’s Algorithm Correctness 11

Proving Correctness
To prove that Kruskal’s Algorithm is correct, we must prove:

1 The output is some spanning tree
2 The output has minimum weight

So, now, we know that G′ is a spanning tree!

Kruskal’s Algorithm Outputs Some MINIMUM Spanning Tree
Let the edges we add to G′ be, in order, e1,e2, . . .ek.
Claim: For all 0 ≤ i ≤ k, {e1,e2, . . .ei} ⊆ Ti for some MST Ti.
Proof: We go by induction.
Base Case. ∅ ⊆G for every graph G.
Induction Hypothesis. Suppose the claim is true for iteration i.
Induction Step. By our IH, we know that {e1, . . . ,ei} ⊆ Ti, where Ti is
some MST of G.
We consider two cases:

If ei+1 ∈ Ti, then we choose Ti+1 = Ti, and we’re done.
Otherwise. . .



Kruskal’s Algorithm Correctness 12

So far, we know. . .
Ti is a spanning tree of G. (earlier proof)
that {e1, . . . ,ei} ⊆ Ti, where Ti is some MST of G. (induction
hypothesis)
ei+1 /∈ Ti. (handled that case)

Kruskal’s Algorithm Outputs Some MINIMUM Spanning Tree (cont.)
Claim: For all 0 ≤ i ≤ k, {e1,e2, . . .ei} ⊆ Ti for some MST Ti.

Since Ti is a spanning tree, it must have some other edge (call it e′)
which was added in place of ei+1.
It follows that Ti+ei+1 must have a cycle!
Note that w(Ti−e′+ei+1) =w(Ti)−w(e′)+w(e).
Since we considered ei+1 before e′, and the edges were sorted by
weight, we know w(e) ≤w(e′) ⇐⇒ w(e)−w(e′) ≤ 0.
So,

w(Ti−e′+ei+1) =w(Ti)−w(e′)+w(e) ≤w(Ti)

This means that Ti−e′+ei+1 has no more than the weight of any MST!



Almost There. . . 13

So far, we know. . .
Ti is a spanning tree of G. (earlier proof)
that {e1, . . . ,ei} ⊆ Ti, where Ti is some MST of G. (induction
hypothesis)
ei+1 /∈ Ti. (handled that case)
w(Ti−e′+ei+1) ≤w(Ti)

Kruskal’s Algorithm Outputs Some MINIMUM Spanning Tree (cont.)
Claim: For all 0 ≤ i ≤ k, {e1,e2, . . .ei} ⊆ Ti for some MST Ti.
Finally, choose Ti+1 = Ti−e′+ei+1.

We already know it has the weight of an MST.
Note that e connects the same nodes as e′; so, it’s also a spanning
tree.

That’s it! For each i, we found an MST that extends the previous one.
So, the last one must also be an MST!



Kruskal’s Algorithm Runtime 14

Sort takes O(n lgn)

We don’t know how UnionFind works, but if we know...

find is O(lgn)
union takes O(lgn) time

The runtime is O(∣E ∣ lg(∣E ∣)+ ∣E ∣ lg(∣V ∣))

Just how does union-find work? Stay tuned!


