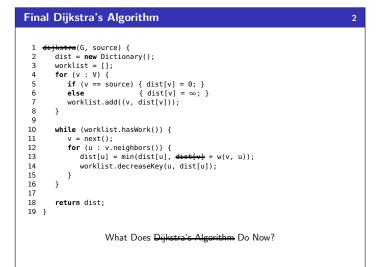
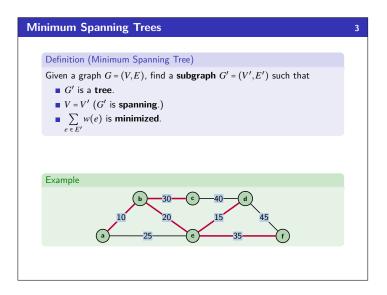


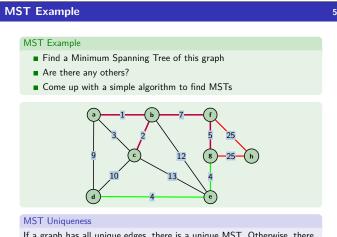
Fin	al Dijkstra's Algorithm	1
1	dijkstra(G, source) {	
2	<pre>dist = new Dictionary();</pre>	
3	worklist = [];	
4	for (v : V) {	
5	<pre>if (v == source) { dist[v] = 0; }</pre>	
6 7	else { dist[v] = ∞ ; }	
7	worklist.add((v, dist[v]));	
8	}	
9		
10	<pre>while (worklist.hasWork()) {</pre>	
11	v = next();	
12	<pre>for (u : v.neighbors()) {</pre>	
13	dist[u] = min(dist[u], dist[v] + w(v, u));	
14	<pre>worklist.decreaseKey(u, dist[u]);</pre>	
15	}	
16	}	
17		
18	return dist;	
19	}	

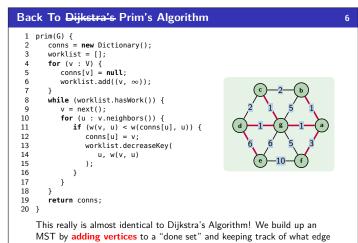




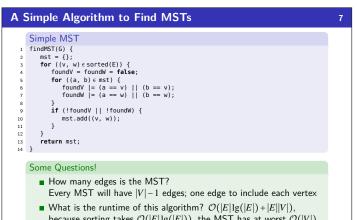
What For?

- Given a layout of houses, where should we place the phone lines to minimize cost?
- How can we design circuits to minimize the amount of wire?
- Implementing efficient multiple constant multiplications
- Minimizing the number of packets transmitted across a network
- Machine learning (e.g., real-time face verification)
- Graphics (e.g., image segmentation)



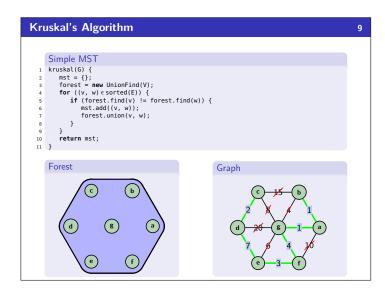


If a graph has all unique edges, there is a unique MST. Otherwise, there might be multiple MSTs.



because sorting takes $\mathcal{O}(|E|\lg(|E|))$, the MST has at worst $\mathcal{O}(|V|)$ edges, and we have to iterate through the MST |E| times.

• What is the slow operation of this algorithm? Checking if a vertex is already in our MST is very slow here. Can we do better?



got us there. Do we have to use vertices? Can we use edges instead?

Dis	joint Sets Al	т	8
010			Ŭ
	-	data structure keeps track of multiple sets which do not nts. Here's the ADT:	
	UnionFind AD	Г	
	find(x)	Returns a number representing the set that \mathbf{x} is in.	
	union(x, y)	Updates the sets so whatever sets \mathbf{x} and \mathbf{y} were in are now considered the same sets.	
	Example		
	list = [1, 2, 3,		
		ist); // State: {1}, {2}, {3}, {4}, {5}, {6}	
		// Returns 1	
	uf.find(2);	<pre>// Returns 2 // State: {1, 2}, {3}, {4}, {5}, {6}</pre>	
	uf.find(1);	// State. (1, 2), (3), (4), (3), (0) // Returns 1	
	uf.find(2);	// Returns 1	
	uf.union(3, 5);	<pre>// State: {1, 2}, {3, 5}, {4}, {6}</pre>	
	uf.union(1, 3);	// State: {1, 2, 3, 5}, {4}, {6}	
	uf.find(3);	// Returns 1	
11	uf.find(6);	// Returns 6	

N.	Aruskai s Algorithini Correctness		
	Proving Correctness		
	To prove that Kruskal's Algorithm is correct, we must prove:		
	The output is some spanning tree The output is some spanning		
	tree		

10

2 The output has minimum weight

skal's Algorithm Co

Kruskal's Algorithm Outputs SOME Spanning Tree

We must show that the output, G^\prime is spanning, connected, and acyclic.

- The algorithm adds an edge whenever one of its ends is not already in the tree. This means that every vertex has an edge in the tree.
- It's acyclic because we check before adding an edge.
- Connected?
 - The original graph is connected; there exists a path between u and v
 Consider the first edge that we look at which is on some path between u and v.
 - Since we haven't previously considered any edge on any path between u and v, it must be the case that u and v are in distinct sets in the disjoint sets data structure. So, we add that edge.

Since there is a path between every u and v in the graph in G', G' is connected by definition

skal's Algorithm Correctness	Kruskal's Algorithm Correctness	
Proving Correctness To prove that Kruskal's Algorithm is correct, we must prove: The output is some spanning tree The output has minimum weight So, now, we know that G' is a spanning tree! Kruskal's Algorithm Outputs Some MINIMUM Spanning Tree Let the edges we add to G' be, in order, $e_1, e_2, \dots e_k$. Claim: For all $0 \le i \le k$, $\{e_1, e_2, \dots e_i\} \subseteq T_i$ for some MST T_i . Proof: We go by induction. Base Case. $\emptyset \subseteq G$ for every graph G . Induction Hypothesis. Suppose the claim is true for iteration i . Induction Step. By our IH, we know that $\{e_1, \dots, e_i\} \subseteq T_i$, where T_i is some MST of G . We consider two cases: If $e_{i+1} \in T_i$, then we choose $T_{i+1} = T_i$, and we're done. Otherwise	So far, we know T _i is a spanning tree of G. (earlier proof) that { $e_1,, e_i$ } $\subseteq T_i$, where T_i is some MST of G. (induction hypothesis) $e_{i+1} \notin T_i$. (handled that case) Kruskal's Algorithm Outputs Some MINIMUM Spanning Tree (cont.) Claim: For all $0 \le i \le k$, { $e_1, e_2,, e_i$ } $\subseteq T_i$ for some MST T_i . Since T_i is a spanning tree, it must have some other edge (call it e') which was added in place of e_{i+1} . It follows that $T_i + e_{i+1}$ must have a cycle! Note that $w(T_i - e' + e_{i+1}) = w(T_i) - w(e') + w(e)$. Since we considered e_{i+1} before e' , and the edges were sorted by weight, we know $w(e) \le w(e') \iff w(e) - w(e') \le 0$. So, $w(T_i - e' + e_{i+1}) = w(T_i) - w(e') + w(e) \le w(T_i)$	

Almost There...

So far, we know...

- T_i is a spanning tree of G. (earlier proof)
- that $\{e_1, \ldots, e_i\} \subseteq T_i$, where T_i is some MST of G. (induction hypothesis)
- $e_{i+1} \notin T_i$. (handled that case)
- $w(T_i e' + e_{i+1}) \le w(T_i)$

Kruskal's Algorithm Outputs Some **MINIMUM** Spanning Tree (cont.)

Claim: For all $0 \le i \le k$, $\{e_1, e_2, \dots e_i\} \subseteq T_i$ for some MST T_i . Finally, choose $T_{i+1} = T_i - e' + e_{i+1}$.

- We already know it has the weight of an MST.
- Note that *e* connects the same nodes as *e'*; so, it's also a spanning tree.

That's it! For each i, we found an MST that extends the previous one. So, the last one must also be an MST!

Kruskal's Algorithm Runtime14• Sort takes $\mathcal{O}(n \lg n)$ • We don't know how UnionFind works, but if we know...• find is $\mathcal{O}(\lg n)$ • union takes $\mathcal{O}(\lg n)$ timeThe runtime is $\mathcal{O}(|E|\lg(|E|) + |E|\lg(|V|))$ Just how does union-find work? Stay tuned!