
Adam Blank Autumn 2015Lecture 14

CSE332
Data Abstractions

CSE 332: Data Abstractions

Introduction to
ForkJoin Parallelism

Where We Are 1

This course was designed to be more “modern” than your standard “data
structures” course. The next few weeks are where this really shines!

For the duration of the course, we will

Drop the assumption that only one thing is happening at a time!

In doing so, we go from Sequential Programming to

Parallel Programming

This brings with it a bunch of benefits and challenges.

Benefits of Parallelism 2

It Makes Code Faster!

Computers are cheap, but time isn’t.

(Also, it takes into account the reality that single CPUs can’t keep up
with the speed we want things to run at.)

Challenges with Parallelism 3

Programming: Divide work among threads of execution and
coordinate (synchronize) among them

Algorithms: How can parallel activity provide speed-up (more
throughput: work done per unit time)

Data Structures: May need to support concurrent access (multiple
threads operating on data at the same time)

Concurrency? Parallelism? Synchronization? 4

Definition (Concurrency*)
Programming as the composition of independently executing
computations.

Concurrency is about dealing with lots of things at once.

(Rob Pike)

Concurrency Examples
That time you simultaneously opened 70 tabs in your browser and
they loaded “at the same time” (Time-slicing)
Your computer can handle keyboard and mouse input at the same
time
If you run one program, you can still run others

Notice that these example all involve concurrency over a single CPU. It
doesn’t have to be that way.

*Note that we will not cover concurrency over a single CPU in this
course. See CSE 333.



Concurrency? Parallelism? Synchronization? 5

Definition (Parallelism)
Programming as the simultaneous execution of (possibly related)
computations.

Parallelism is about doing lots of things at once.

(Rob Pike, again)

Parallelism Example (please indulge me)
1 You have an index card. If your birthday is in March, write a 1 on

the card. Otherwise, write 0.
2 Hand your card off to someone who only has one card. If you now

have two cards, add the numbers on the two cards, write the new
number on one of the cards, and discard the other one.

3 Repeat step two until there is only one person with a card.
In this example, each of you were a thread, you executed
simultaneously, and, perhaps most importantly, did it really quickly.

Concurrency? Parallelism? Synchronization? 6

Definition (Synchronization)
Dealing with the access/editing of a shared resource among concurrently
executing programs.

Synchronization Example
(We won’t actually do this one.)

1 In the front of the room, there are 12 index cards and tweleve
pencils (one corresponding to each index card). One pair for each
month of the year.

2 First, get the pencil corresponding to your birth month, then add 1
to the number already on the card.

In this example, each of you were a thread, the index cards were a hash
table, and the pencils provided synchronization.

Concurrency? Parallelism? Synchronization? 7

In this course, we will focus on parallelism and synchronization:

Parallelism

Work

Worker 3Worker 2Worker 1 Worker 4 Worker 5

Again, concurrency is not the same as parallelism! They’re easy to
confuse, but the distinction is important.

Synchronization

Resource

Worker 3Worker 2Worker 1 Worker 4 Worker 5

Our First Parallel Program (not real code) 8

Parallel Psuedocode

1 int sum(int[] arr, int lo, int hi) {
2 result = 0;
3 for (i = lo; i < hi; i++) {
4 result += arr[i];
5 }
6 return result;
7 }
8 int sum(int[] arr) {
9 pieces = new int[4];

10 parallel (i = 0; i < 4; i++) {
11 lo = i * arr.length / 4
12 hi = (i + 1) * arr.length / 4
13 pieces[i] = sum(arr, lo, hi);
14 }
15 return sum(pieces, 0, 4);
16 }

If we’re super lucky, this idea would get us a 4x speed-up.

A Model: Shared Memory with Threads 9

Sequential Programming Model
One program counter (instruction executing)
One call stack (all variables not made with new)
Objects in the heap (all variables made with new)

Shared Memory with Threads
A set of threads, each of which has:

One program counter (instruction executing)
One call stack (all variables not made with new)

Objects in the heap may be shared by passing a common pointer to
multiple threads (and then editing them).

Shared Memory with Threads 10

1 int[] arr = new int[4];
2
3 new SumThread(arr, 0);
4 new SumThread(arr, 1);
5 new SumThread(arr, 2);
6 new SumThread(arr, 3);

1 int i = 0;
2 return arr[i];

1 int i = 1;
2 return arr[i];

1 int i = 2;
2 return arr[i];

1 int i = 3;
2 return arr[i];



Other Models 11

We will focus on shared memory, but you should know several other
models exist and have their own advantages

Message-Passing: Each thread has its own collection of objects.
Communication is via explicitly sending/receiving messages (e.g.
Cooks working in separate kitchens, mail around ingredients)

Dataflow: Programmers write programs in terms of a graph. A
node executes after all of its predecessors in the graph (Cooks wait
to be handed results of previous steps)

Data Parallelism: Have primitives for things like “apply function to
every element of an array in parallel”

What Do We Need To Write Parallel Programs? 12

Parallel Primitives
We need to be able to create multiple “things” running at once:
We call these threads. To get a new thread, we fork an old one.

We need threads to share memory:
Pass two threads the same array, object, etc. (Remember, Java
passes Object references.)

We need threads to coordinate:
For now, we can combine them together using join. Later, we’ll
learn about a synchronization primitive.

Unsurprisingly, the framework we’ll be using is called ForkJoin:

ForkJoin API
worker.fork() Sets the worker in action (in parallel)
worker.join() Pauses the execution of this thread until worker is

done executing. Returns the result from worker

From Sequential to Parallel 13

Sum Array
Sum the numbers in an array.

Sequential Solution
1 public static long sum(long[] arr, int lo, int hi) {
2 long result = 0;
3 for (int i = lo; i < hi; i++) {
4 result += arr[i];
5 }
6 return result;
7 }
8
9 public static long sum(long[] arr) {

10 return sum(arr, 0, arr.length);
11 }

We need to replace the sequential for loop with a parallel for loop in
some way.

Using RecursiveTask 14

In the ForkJoin library, our threads should subclass RecursiveTask:
Using RecursiveTask

1 static class SumTask extends RecursiveTask<Long> {
2 long[] arr; int lo, hi;
3
4 public SumTask(long[] arr, int lo, int hi) {
5 this.arr = arr; this.lo = lo; this.hi = hi;
6 }
7 protected Long compute() {
8 long result = 0;
9 for (int i = lo; i < hi; i++) {

10 result += arr[i];
11 }
12 return result;
13 }
14 }
15
16 public static long sum(long[] arr) {
17 SumTask task = new SumTask(arr, 0, arr.length);
18 return task.compute();
19 }

But we’re just calling compute sequentially.
So, we don’t even spawn ONE new thread.

Using ForkJoinPool 15

To set the first thread running, we invoke it using a thread pool:

Using The Thread Pool
1 public static final ForkJoinPool POOL = new ForkJoinPool();
2
3 static class SumTask extends RecursiveTask<Long> {
4 long[] arr; int lo, hi;
5
6 public SumTask(long[] arr, int lo, int hi) {
7 this.arr = arr; this.lo = lo; this.hi = hi;
8 }
9 protected Long compute() {

10 long result = 0;
11 for (int i = lo; i < hi; i++) {
12 result += arr[i];
13 }
14 return result;
15 }
16 }
17
18 public static long sum(long[] arr) {
19 SumTask task = new SumTask(arr, 0, arr.length);
20 return POOL.invoke(task);
21 }

All of the threads fork creates will come from the ForkJoinPool.

Using fork 16

From now on, we’ll focus on the compute method, because that’s where
the majority of the work goes in.

Forking!
1 protected Long compute() {
2 if (hi < arr.length) {
3 int nextLo = lo + arr.length/4;
4 int nextHi = hi + arr.length/4;
5 SumTask task = new SumTask(arr, nextLo, nextHi);
6 task.fork();
7 }
8
9 long result = 0;

10 for (int i = lo; i < hi; i++) {
11 result += arr[i];
12 }
13
14 return result; /* BROKEN: We didn’t use task’s result! */
15 }

Here, we break the work into four pieces (each thread creates the next):
1 3 17 20 24 4 32 2 18 14 22 33

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶



Using join 17

Joining!
1 protected Long compute() {
2 long result = 0;
3 SumTask task = null;
4 if (hi < arr.length) {
5 int nextLo = lo + arr.length/4;
6 int nextHi = hi + arr.length/4;
7 task = new SumTask(arr, nextLo, nextHi);
8 task.fork();
9 }

10
11 for (int i = lo; i < hi; i++) {
12 result += arr[i];
13 }
14
15 // If we call join earlier, then it won’t be parallel!
16 if (task != null) {
17 result += task.join();
18 }
19
20 return result;
21 }

The idea is to start the next thread, do our own work, and sync up with
the one after us to combine results.

Shared Memory? 18

1 3 17 20 24 4 32 2 18 14 22 33
A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶ ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Thread 1 Thread 2 Thread 3 Thread 4

What Memory is Shared?
In our sum example, the same array is passed to all the threads! The lo
and hi tell the threads what work to do, and they don’t step over each
other. Fundamentally, if we couldn’t share the array, we wouldn’t be able
to do the parallelism.

So, are we done? Is there anything wrong with this algorithm?

Generalizing 4 to n 19

Our algorithm so far is bad. Here’s why:
1 We want our code to be reusable and efficient across platforms:

“Forward-portable” as core count grows
We should (at the very least. . . ) parametrize by the number of
threads

2 We only want to use available processors:
There are probably other programs?
If we attempt to use more processors than there are, we actually end
up with a slower algorithm!
If we have 3 processors available and 3 threads would take x time,
then four would take 1.5x time. . .

3 In general, different sub-problems might takes different amounts of
time. Consider our next example: “How many primes in this range?”

So, how do we fix this?

Break Up The Work More! 20

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

A[4] A[5] A[6] A[7]

A[6] A[7]

A[7]A[6]

A[4] A[5]

A[5]A[4]

A[0] A[1] A[2] A[3]

A[2] A[3]

A[3]A[2]

A[0] A[1]

A[1]A[0]

+ +

+

+ +

+

+

Break Up The Work More! 21

5 2 3 9 7 6 1 8
A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

7 6 1 8
A[4] A[5] A[6] A[7]

1 8
A[6] A[7]

8
A[7]

1
A[6]

7 6
A[4] A[5]

6
A[5]

7
A[4]

5 2 3 9
A[0] A[1] A[2] A[3]

3 9
A[2] A[3]

9
A[3]

3
A[2]

5 2
A[0] A[1]

2
A[1]

5
A[0]

7 12

19

13 9

22

41

Parallel Prime Sieve 22

Prime Sieve
1 protected Integer compute() {
2 PrimeFinderTask task = null;
3 if (lo < hi − 1) {
4 task = new PrimeFinderTask(lo + 1, hi);
5 task.fork();
6 }
7
8 int result = 0;
9 result += isPrime(lo) ? 1 : 0;

10
11 if (task != null) {
12 result += task.join();
13 }
14 return result;
15 }

This is is going to be very slow (and run out of stack space very quickly).
Divide and conquer can do better.



Parallel Prime Sieve 23

Prime Sieve
1 protected Integer compute() {
2 if (lo < hi − 1) {
3 int mid = lo + (hi − lo) / 2;
4 PrimeFinderTask left = new PrimeFinderTask(lo, mid);
5 PrimeFinderTask right = new PrimeFinderTask(mid, hi);
6
7 left.fork();
8 right.fork();
9

10 return left.join() + right.join();
11 }
12
13 return isPrime(lo) ? 1 : 0;
14 }

Unfortunately, this is going to be really slow in practice. The issue is that
the overhead of creating a thread to do a single prime task will overtake
the benefit of the parallelism at some point. The solution is to use a
cutoff after which we switch to the sequential solution.

Parallel Prime Sieve 24

Instead of cutting the work into fourths, cut it into n pieces (where n is
the size of the array). Let’s switch to a (slightly) more realistic example:

Prime Sieve
1 protected Integer compute() {
2 if (hi − lo <= CUTOFF) {
3 return sequentialNumberOfPrimes(lo, hi);
4 }
5
6 int mid = lo + (hi − lo) / 2;
7 PrimeFinderTask left = new PrimeFinderTask(lo, mid);
8 PrimeFinderTask right = new PrimeFinderTask(mid, hi);
9

10 left.fork();
11 right.fork();
12
13 return left.join() + right.join();
14 }

We’re almost there. One last problem: consider what work each forking
thread does:

Fork left, Fork right, Wait for left, Wait for right
Insight: It doesn’t do any work itself. This is a waste.

Parallel Prime Sieve 25

Prime Sieve
1 protected Integer compute() {
2 if (hi − lo <= CUTOFF) {
3 return sequentialNumberOfPrimes(lo, hi);
4 }
5
6 int mid = lo + (hi − lo) / 2;
7 PrimeFinderTask left = new PrimeFinderTask(lo, mid);
8 PrimeFinderTask right = new PrimeFinderTask(mid, hi);
9

10 left.fork();
11 int result = right.compute();
12
13 return left.join() + result;
14 }

Finally, this is reasonable parallel code. And we can even see a great
speed-up if we run both sequential and parallel.

Getting Good Results In Practice 26

Sequential Threshold
The library documentation recommends doing approximately 100-5000
basic operations in each “piece” of your algorithm.

Library Needs To “Warm Up”
You may see slow results before the Java virtual machine reoptimizes the
library internals.

Use A Machine With More Processors
For p3, we’ll be using Google Compute Engine! So, you can see
parallelism at its best.

Beware The Memory-Hierarchy
We won’t focus on this (in this course), but it’s often crucial for parallel
performance.


