Lecture 24

Data Abstractions

CSE 332: Data Abstractions

P vs. NP: Efficient Reductions Between Problems Let's consider the **longest path** problem on a graph.

Remember, we were able to do shortest paths using Dijkstra's.

Take a few minutes to try to solve the longest path problem.

Definition (Decision Problem)

A decision problem (or language) is a set of strings $(L \subseteq \Sigma^*)$. An algorithm (from Σ^* to boolean) solves a decision problem when it outputs true iff the input is in the set.

PRIMES	
Input(s):	Number <i>x</i>
Output:	true iff x is prime

An Algorithm that solves **PRIMES**

```
1 isPrime(x) {
2   for (i = 2; i < x; i++) {
3      if (x % i == 0) {
4         return false;
5      }
6    }
7   return true;
8 }</pre>
```

Efficient?

In this lecture, we'll be talking about **efficient reductions**. So, naturally, we have to answer two questions:

- What is an efficient algorithm?
- What is a reduction?

Efficient Algorithm

We say an algorithm is **efficient** if the worst-case analysis is a **polynomial**. Okay, but...

- $n^{10000000...}$ is polynomial
- **3000000000000000** is polynomial

Are those really efficient?

Well, no, but, in practice...

when a polynomial algorithm is found the constants are actually low

Polynomial runtime is a very low bar, if we can't even get that...

This lecture is about exposing hidden similarities between problems.

We will show that problems that are **cosmetically different** are **substantially the same**!

Our main tool to do this is called a reduction:

Reductions

We have two **decision problems**, **A** and **B**. To show that **A** is "at least as hard as" **B**, we

- Suppose we can solve A
- Create an algorithm, which calls **A** as a method, to solve **B**

To show they're the same, we have to do both directions.

Longest Paths and HAM!

Two New Computational Problems

1	LONG-PATH	
	Input(s): Output:	Unweighted Graph G; Number k
	Output:	true iff G has a path with k edges

HAM-PATH

Input(s):Unweighted Graph GOutput:true iff G has a path using all vertices

Suppose we could solve LONG-PATH...

Suppose we could solve HAM-PATH...

```
"Algorithm"
1 HAM-PATH(G) {
2 return LONG-PATH(G, |V| - 1)
3 }
```

```
"Algorithm"
1 LONG-PATH(G, k) {
  for (G' = (v<sub>1</sub>, v<sub>2</sub>,...,v<sub>k</sub>) in G) {
    if (HAM-PATH(G')) {
        return true;
        }
    }
    return false;
    }
```

Definition (k-coloring)

A k-coloring of a graph G is an assignment of k colors to vertices such that no two adjacent vertices have the same color.

2-COLOR Input(s): Output:	Graph G true iff G has a valid 2-coloring	
Can we s	lvo this?	Can we solve this efficient

Algorithm For 2-COLOR

Try all 2^n possible colorings of the input graph!

Efficient Algorithm For 2-COLOR

Do a dfs on the graph! Every time we hit a vertex, assign it the opposite color from the vertex we just visited. If there's a color conflict, output false. If we finish with no color conflict. output true.

Definition (k-coloring)

A k-coloring of a graph G is an assignment of k colors to vertices such that no two adjacent vertices have the same color.

3-COLOR	
Input(s): Output:	Graph G true iff G has a valid 3-coloring

Inefficient Algorithm For 3-COLOR

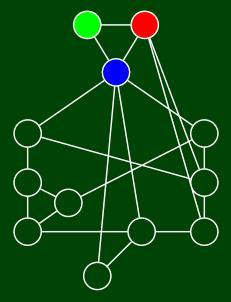
Try all 3^n possible colorings of the input graph!

Efficient Algorithm For 3-COLOR

UNKNOWN

A Graph Called "Gadget"

Find a valid 3-coloring of this graph. To orient ourselves, I've started it:



Another Decision Problem!

CIRCUITSAT

Input(s): n-Input/1-Output Circuit C
Output: true iff C has a satisfying assignment

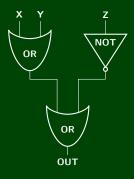
Inefficient Algorithm For CIRCUITSAT

Try all 2^n possible assignments of variables

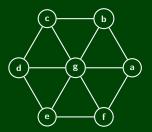
Efficient Algorithm For CIRCUITSAT

UNKNOWN

Suspicious...



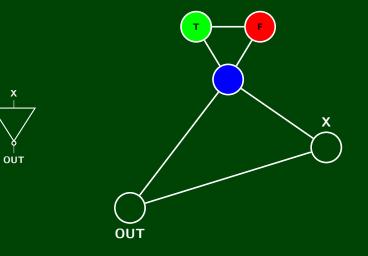
3-COLOR



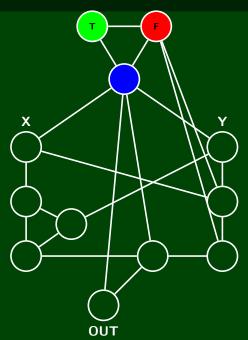
We don't know how to solve either of these problems...

Could they be the same problem in disguise?

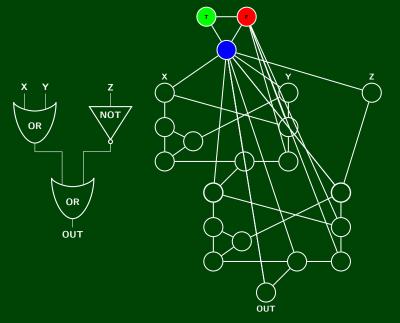
Not Gadget with Labels



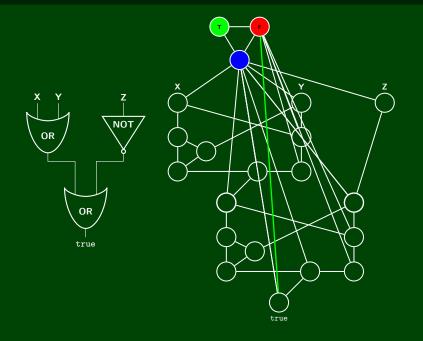
Or Gadget with Labels



Circuit



SATISFIABLE Circuit



We found a way to "emulate" circuit satisfiability using three coloring!

If we can find a solution to $\ensuremath{\textbf{3-COLOR}}$, we can solve $\ensuremath{\textbf{CIRCUITSAT}}$ quickly.

These problems are substantially the same