
Adam Blank Autumn 2015Lecture 7

CSE332
Data Abstractions

CSE 332: Data Abstractions

Dictionaries & Trees

Outline

1 Dictionaries & Sets

2 Vanilla BSTs

ADT’s So Far 1

Where We’ve Been So Far
Stack (Get LIFO)
Queue (Get FIFO)
Priority Queue (Get By Priority)

Today, we begin discussing Maps. This ADT is hugely important.

A New ADT: “Dictionaries” (Also called “Maps”) 2

Dictionary ADT
Data Set of Comparable (key, value) pairs
insert(key, val) Places (key, val) in map (overwrites existing

val entry)
find(key) Returns the val currently associated to key
delete(key) deletes any pair relating key from the map

Keys Values

“very hello”

“goodbye”

“such strings”

“much wow”

7

12

10

8

find(“such strings”) → 12

Sets and Maps 3

Dictionaries are the more general structure, but, in terms of
implementation, they’re nearly identical.

In a Set, we store the key directly, but conceptually, there’s nothing
different in storing an Entry:

1 class Entry {
2 Data key;
3 Data value;
4 }

The Set ADT usually has our favorite operations: intersection, union, etc.

Notice that union, intersection, etc. still make sense on maps!

As always, depending on our usage, we might choose to add/delete
things from out ADT.

Bottom Line: If we have a set implementation, we also have a valid
dictionary implementation (and vice versa)!



Dictionaries Are The BEST! 4

It turns out dictionaries are super useful. They’re a natural generalization
of arrays. Instead of storing data at an index, we store data at anything.

Networks: router tables

Operating Systems: page tables

Compilers: symbol tables

Databases: dictionaries with other nice properties

Search: inverted indexes, phone directories, . . .

Biology: genome maps

Dictionary Implementations, Take # 1 5

For each of the following potential implementations, what is the worst
case runtime for insert, find, delete?

Unsorted Array
Insert by searching for existence and inserting which is O(n)
Find by linear search which is O(n)
Delete by linear search AND shift which is O(n)
Unsorted Linked List
Insert by searching for existence and inserting which is O(n)
Find by linear search which is O(n)
Delete by linear search AND shift which is O(n)
Sorted Linked List
Insert by searching for existence and inserting which is O(n)
Find by linear search which is O(n)
Delete by linear search AND shift which is O(n)
Sorted Array List
Insert by binary search AND shift which is O(n)
Find by binary search which is O(lgn)
Delete by binary search AND shift which is O(n)

Dictionary Implementations, Take # ?? 6

It turns out there are many different ways to do much better.

But they all have their own trade-offs!

So, we’ll study many of them:
“Vanilla BSTs” – today (vanilla because they’re “plain”)
“Balanced BSTs” – there are many types: we’ll study AVL Trees
“B-Trees” – another strategy for a lot of data
“Hashtables” – a completely different strategy (lack data ordering)
We already saw another strategy: the amortized array dictionary

Where The Idea Comes From 7

Binary Search is great! It’s the only thing that was even sort of fast in
that table. But insert and delete are really bad into a sorted array.
Store the data in a structure where most of the data isn’t accessed.

Interestingly, this is very similar to what made heaps useful!
To put it another way, by storing the data in an array, we’re paying for
the constant-time access that we’re never even using!

It’s okay that it takes more time to access certain elements.
. . . as long as it’s never too bad.

Definition (Vanilla BST)
A binary tree is a BST when an in-order traversal of the tree yields a
sorted list.

To put it another way, a binary tree is a BST when:
All data “to the left of” a node is less than it
All data “to the right of” a node is greater than it
All sub-trees of the binary tree are also BSTs

Am I A BST? 8

Example (Which of the following are BSTs?)

1

2 3

root

2

1 3

root 10

2

1 3

6

12

root

NO YES NO

BST Properties

4

2

3

7

6

5

9

8 10

Structure Property:
0, 1, or 2 children

BST Property:
Keys in Left Subtree are smaller
Keys in Right Subtree are larger

Height of a Binary Tree 9

Definition (Height)
The height of a binary tree is the length of the longest path from the
root to a leaf.

Height of an empty tree? -1
Height of X ? 0

height

0

root

10

5

6

7

8

80

70

75

root

1

2

3 4

5

root

height is 0 height is 4 height is 2

1 private int height(Node current) {
2 if (current == null) { return −1; }
3 return 1 + Math.max(height(current.left), height(current.right));
4 }



Why height? 10

Height
1 private int height(Node current) {
2 if (current == null) { return −1; }
3 return 1 + Math.max(height(current.left), height(current.right));
4 }

Given that a tree has height h. . .
What is the maximum number of leaves? 2h

What is the maximum number of nodes? 2h+1−1
What is the minimum number of leaves? 1
What is the minimum number of nodes? h+1

That’s a big spread!

This confirms what we already know: height in a tree has a big impact
on runtime.

find Review 11

10

5

6

7

8

80

70

75

root

What about other finds?
findMin?
findMax?
deleteMin?

Recursive find
1 Data find(Key key, Node curr) {
2 if (curr == null) { return null; }
3 if (key < curr.key) {
4 return find(key, curr.left);
5 }
6 if (key > curr.key) {
7 return find(key, curr.right);
8 }
9 return curr.data;

10 }

Iterative find
1 Data find(Key key) {
2 Node curr = root;
3 while (curr != null && curr.key != key) {
4 if (key < curr.key) {
5 curr = curr.left;
6 }
7 else (key > curr.key) {
8 curr = curr.right;
9 }

10 }
11 if (curr == null) { return null; }
12 return curr.data;
13 }

insert Review 12

10

5

4

3

2

80

70

75

root

insert
find
create a new node

How about delete?

delete 13

Consider the following tree:

5

1

2

7

6 8

Let’s try the following removals:
tree.delete(2)
tree.delete(1)
tree.delete(7)
tree.delete(5)

delete from a BST 14

tree.delete(2)

5

1

2

7

6 8
Ð→

5

1 7

6 8

tree.delete(1)

5

1

2

7

6 8
Ð→

5

2 7

6 8

tree.delete(7)

5

1

2

7

6 8
Ð→

5

1

2

?

6 8

tree.delete(5)

5

1

2

7

6 8
Ð→

?

1

2

7

6 8

delete from a BST 15

tree.delete(2)

5

1

2

7

6 8
Ð→

5

1 7

6 8

tree.delete(1)

5

1

2

7

6 8
Ð→

5

2 7

6 8

tree.delete(7)

5

1

2

7

6 8
Ð→

5

1

2

6

8

tree.delete(5)

5

1

2

7

6 8
Ð→

6

1

2

7

8



delete 16

10

5

6

7

8

80

70

75

root delete(x)
Case 1: x is a leaf

Just delete x

Case 2: x has one child
Replace x with its child

Case 3: x has two children
Replace x with the successor or
predecessor of x

The tricky case is when x has two children. If we think of the BST in
sorted array form, to get the successor, we findMin(right subtree) (or
predecessor is findMax(left subtree))

delete is hard; let’s go shopping 17

Instead of doing this complicated algorithm, here’s an idea:

Mark the node as “deleted” instead of doing anything

lazyDelete(5)

10

5

6

7

8

80

70

75

root

ÐÐ→
10

5

6

7

8

80

70

75

root

Then, insert and find change slightly, but the whole thing is much
simpler.

This “lazy deletion” is a very useful strategy!

buildTree 18

Psuedocode
1 void buildTree(int[] input) {
2 for (int i = 0; i < input.length; i++) {
3 insert(input[i]);
4 }
5 }

What’s the best case? The worst case?

The worst case is a sorted input which is O(n2). Ouch.

The Good News
On average, we get O(lgn) height (see textbook for proof). But we
want it to always be O(lgn) height. . .

The Solution
Add restrictions on the height of the tree. Somehow, the tree should “fix
itself” so it never has too large a height.
We call this condition a Balance Condition.

Balance Condition? 19

Ideas?
Left and right subtrees of the root have the same number of nodes
Left and right subtrees of the root have the same height

These ideas suffer from the same problem:

They’re local conditions rather than global ones.

Balance Condition? 20

Ideas?
Left and right subtrees //of/////the//////root recursively have the same
number of nodes
Left and right subtrees //of/////the//////root recursively have the same height

These ideas suffer from the same problem:

They’re way too strong. Only perfect trees satisfy them.

AVL Balance Condition! 21

Left and right subtrees recursively have heights differing by at most one.

Definition (balance)
balance(n) = abs(height(n.left)−height(n.right))

Definition (AVL Balance Property)
An AVL tree is balanced when:

For every node n, balance(n) ≤ 1

This ensures a small depth (we’ll prove this next time)
It’s relatively easy to maintain (we’ll see this next time)


