
Adam Blank Autumn 2015Lecture 9

CSE
332

Data Abstractions

CSE 332: Data Abstractions

B-Trees
B B B B

B B B B

B
B

Outline

1 A New Model For Time Complexity

2 M-ary Search Trees

3 B-Trees

A New Model? 1

We’ve been assuming that all memory accesses are the same. In
practice, this isn’t true. The memory hierarchy looks something like this:

Registers
128B = 24 Fetch from Register: “free”

L1 Cache:
128KB = 217

Fetch from L1 Cache:
0.5 nanoseconds

L2 Cache:
2MB = 221

Fetch from L2 Cache:
7 nanoseconds

Main Memory: 16GB = 234 Fetch from Main Memory:
100 nanoseconds

Disk: 1TB = 240 Fetch from Disk:
8,000,000 nanoseconds

The take-away is that disk accesses are very expensive.

A New Model? 2

Why do we care how the machine works?
Big-Oh is just an abstraction that says “all memory fetches are
equal”. . . but in practice, some memory fetches are more equal than
others. (The disk is prohibitively slow.)

AVL Trees: Big-Oh vs. Practice
We’ve seen that AVL Trees are O(lgn) which is great, but what if we
account for disk accesses?
Consider an AVL Tree of height 40 where each node is b bytes.

How many nodes in the tree? lgn = 40→ n = 240. So, we need about
b terabytes

for the tree. This means an overwhelming majority is on the disk.
How many disk accesses does a find take? It could take none (3
nanoseconds) or it could take 40 (0.3 seconds). That’s a
difference of: 100,000,000

If the data structure is mostly on disk, yes, we still need a data structure
that is O(lgn), but it’s not enough anymore!

Okay. . . :(3

Problem
A dictionary with so much data most of it is on disk

Goal
A balanced tree (logarithmic height) that is even shallower than AVL
trees so that we can minimize disk accesses and exploit disk-block size

The Idea
Increase the branching factor of our tree

M-ary Search Tree 4

M-ary Search Tree

Like a binary tree, but with M branches instead of two.

M-ary Search Tree Properties
Height (if balanced)? O(logM(n))
Ordering Property?

Binary Tree: smaller on the left, larger on the right
M-ary Tree: split the range into M equal sized groups

Runtime of find (if balanced)? O(h lgM) = O(logM(n) lgM)
h possible nodes to visit: logM(n)
Binary Search on each node: lgM

Good start, but. . . 5

M-ary Search Tree Example?
30,“apple” 41,“banana” 80,“grape”

10,“strbry” 20,“hnydw” 40,“wtrmln” 45,“rspbry” 55,“cherry” 62,“blcbry” 81,“pear” 84,“cntlpe” 99,“pch”

Some Questions
What should the order property be?
How would re-balancing work? We DON’T want to do more disk
accesses!

Some Thoughts
We will have to load the values (e.g., fruits) for all the internal
nodes. This is very wasteful!
Usually we are just “passing through” a node on the way to the
value we are actually looking for.

B-Trees 6

Two Types of Nodes
Internal Nodes
(“sign posts”)
K K K K

An internal node has M−1 sorted
keys and M pointers to children

Leaf Nodes
(“real data”)

K,V
K,V
K,V

A leaf node has L sorted
key/value pairs

B-Tree Order Property
3 7 12 21

x < 3 3 ≤ x < 7 7 ≤ x < 12 12 ≤ x < 21 x ≥ 21

Subtree between a and b contains all data x where a ≤ x < b

B-Tree Structure Property 7

First, choose M > 2 and any L. (Here M = 4,L = 5.)

Very Few Nodes
If n ≤ L, the ROOT is a LEAF:

12

Otherwise, the root must have between 2 and M children

B-Tree Example
12 44

06

01
02
04

06
08
09
10

20 27 34

12
14
16
17
19

20
22
24

27
28
32

34
38
39
41

50

44
47
49

50
60
70

Internal Nodes must have between ⌈M
2 ⌉ and M children (i.e., half full).

Leaf Nodes must have between ⌈L
2 ⌉ and L children (i.e., half full).

B-Tree Find 8

Find
find(6), find(39)

12 44

06

01
02
04

06
08
09
10

20 27 34

12
14
16
17
19

20
22
24

27
28
32

34
38
39
41

50

44
47
49

50
60
70

4412

27 3406

06
08

39
38

Balanced Enough!
Let M > 2. Since all nodes are at least half full (ignoring the root), we
have:

2⌈
M
2
⌉

h−1
leaves, and each leaf has at least ⌈L

2
⌉ data items

So, n ≥ 2⌈
M
2
⌉

h−1
×⌈

L
2
⌉. So, the height h is logarithmic in the number of

data items n.

B-Tree Insertion 9

insert(3)
ÐÐÐÐÐ→

3
insert(18)
ÐÐÐÐÐÐ→

3
18 insert(14)

ÐÐÐÐÐÐ→

3
14
18

insert(30)
ÐÐÐÐÐÐ→SPLIT

18

3
14

18
30

18

insert(32)
ÐÐÐÐÐÐ→

18

3
14

18
30
32

insert(36)
ÐÐÐÐÐÐ→SPLIT

18 32

3
14

18
30

32
36

32

insert(15)
ÐÐÐÐÐÐ→

18 32

3
14
15

18
30

32
36

insert(16)
ÐÐÐÐÐÐ→SPLIT

18 32

3
14

15
16

18
30

32
36

B-Tree Insertion (Continued) 10

insert(16)
ÐÐÐÐÐÐ→SPLIT

18 32

3
14

15
16

18
30

32
36

insert(16)
ÐÐÐÐÐÐ→SPLIT
ABOVE

15

3
14

15
16

18 32

18
30

32
36

15
insert(16)
ÐÐÐÐÐÐ→NEW

ROOT

18

15

3
14

15
16

32

18
30

32
36

18

B-Tree Insertion (Continued) 11

insert(12), insert(40), insert(45), insert(38)

18

15

3
12
14

15
16

32 40

18
30

32
36
38

40
45

Always fill the “signpost” with the smallest value to my right!

Insertion Algorithm 12

Insert the data in the correct leaf in sorted order.

If the leaf has L+1 items, overflow:
Split the leaf into two new nodes:

Original leaf with ⌈
L+1

2
⌉ smaller items

New leaf with ⌈
L
2
⌉ larger items

Attach the new child to the parent

Add the new key to the parent in sorted order

Recursively continue overflowing if necessary. Noting that on the
internal nodes we split using M instead of L.

In the case where the root overflows, make a new root.

Efficiency of Insert 13

How Efficient is Insert?
Find the correct leaf: O(lg(M) logM(n))

Insert in the leaf: O(L)
Split leaf: O(L)
Split parents all the way up to the root: O(M logM(n))

In total, this gives us O(L+M logM(n)).

But It’s Actually Pretty Good!
Splits are very uncommon (think amortized analysis)
Splitting the root almost never happens
We’re significantly more concerned about disk accesses than
anything else: O(logM(n))

B-Tree Deletion 14

18

15

3
12
14

15
16

32 40

18
30

32
36
38

40
45

delete(32)
ÐÐÐÐÐÐ→

18

15

3
12
14

15
16

32 40

18
30

36
38

40
45

32

Fix Internal
ÐÐÐÐÐÐ→

18

15

3
12
14

15
16

32 40

18
30

36
38

40
45

36

B-Tree Deletion (Continued) 15

18

15

3
12
14

15
16

32 40

18
30

32
36
38

40
45

delete(32)
ÐÐÐÐÐÐ→

18

15

3
12
14

15
16

32 40

18
30

36
38

40
45

36

delete(15)
ÐÐÐÐÐÐ→

18

15

3
12
14

16

36 40

18
30

36
38

40
45

This breaks our invariant.
Leaves must have more than
one node!

B-Tree Deletion (Continued) 16

18

15

3
12
14

15
16

32 40

18
30

36
38

40
45

delete(15)
ÐÐÐÐÐÐ→

18

15

3
12
14

16

36 40

18
30

36
38

40
45

15

Adopt
Neighbor’s

Child!
ÐÐÐÐÐÐÐÐ→

18

14

3
12

14
16

36 40

18
30

36
38

40
45

14

B-Tree Deletion (Continued) 17

18

14

3
12

14
16

36 40

18
30

36
38

40
45

delete(16)
ÐÐÐÐÐÐ→

18

14

3
12

14

36 40

18
30

36
38

40
45

This time, we can’t adopt.
(We’d break another in-
variant.) The solution is
to adopt recursively.

Adopt
Neighbor’s

Child!
ÐÐÐÐÐÐÐÐ→

18

3
12
14

36 40

18
30

36
38

40
45

Adopt
Neighbor’s

Child!
ÐÐÐÐÐÐÐÐ→

36

18

3
12
14

18
30

40

36
38

40
45

18

36

B-Tree Deletion (Continued) 18

36

18

3
12
14

18
30

40

36
38

40
45

18

36

delete(14)
ÐÐÐÐÐÐ→

36

18

3
12

18
30

40

36
38

40
45

delete(18)
ÐÐÐÐÐÐ→

36

3
12
30

40

36
38

40
45

B-Tree Deletion (Continued) 19

36

18

3
12

18
30

40

36
38

40
45

delete(18)
ÐÐÐÐÐÐ→

36

3
12
30

40

36
38

40
45

Merge!
ÐÐÐÐÐÐÐÐ→

36 40

3
12
30

36
38

40
45

Deletion Algorithm 20

Remove the data from correct leaf.

If the leaf has ⌈L
2
⌉−1 items, underflow:

If a neighbor has more than ⌈L
2
⌉, adopt one!

Otherwise, merge with a neighbor (parent will now have one fewer
node)

Recursively continue underflowing if necessary. Noting that on the
internal nodes we split using M instead of L.

If we merge all the way up to the root and the root went from 2→ 1
children, then delete the root and make the child the root.

Efficiency of Delete 21

How Efficient is Delete?
Find the correct leaf: O(lg(M) logM(n))

Remove from the leaf: O(L)
Adopt/Merge with neighbor: O(L)
Merge parents all the way up to the root: O(M logM(n))

In total, this gives us O(L+M logM(n)).

But It’s Actually Pretty Good!
Merges are very uncommon (think amortized analysis)
We’re significantly more concerned about disk accesses than
anything else: O(logM(n))

Disk Friendlyness 22

What makes B-Trees so disk friendly?
Many keys stored in one internal node: all brought into memory in
one disk access
Makes the binary search over M−1 keys totally worth it
(insignificant compared to disk access times)
Internal nodes contain only keys (it’s a waste to load all the values)

We take advantage of the choice of M and L to ensure good behavior!

Choosing M and L 23

We want each of M and L to fit as best as possible in the page size.

Say we know the following:
1 page on disk is p bytes
Keys are k bytes
Pointers are t bytes
Key/Value pairs are v bytes

Then, we should choose the following:
p ≥M×(size of a pointer)+(M−1)×(size of a key) =Mt +(M−1)k.
So, M = ⌊

p+k
t +k
⌋.

p ≥ L×v. So, L = ⌊
p
v
⌋.

Wrap-Up 24

Balanced trees make good dictionaries because they guarantee
logarithmic-time find, insert, and delete

Essential and beautiful computer science

But only if you can maintain balance within the time bound

AVL Trees maintain balance by tracking height and allowing all
children to differ in height by at most 1

B-Trees maintain balance by keeping nodes at least half full and all
leaves at same height

Other great balanced trees (see text; worth knowing they exist)
Red-black trees: all leaves have depth within a factor of 2

Splay trees: self-adjusting; amortized guarantee; no extra space for
height information

	A New Model For Time Complexity
	M-ary Search Trees
	B-Trees

