
Adam Blank Autumn 2015Lecture 8

CSE
332

Data Abstractions

CSE 332: Data Abstractions

AVL Trees

/
/

/
,

,

/
/
,
,

Outline

1 Introducing AVL Trees

2 Tree Representation in Code

3 How Does an AVL Tree Work?

4 Why Does an AVL Tree Work?

5 AVL Tree Examples

AVL Balance Condition! 1

Left and right subtrees recursively have heights differing by at most one.

Definition (balance)
balance(n) = abs(height(n.left)−height(n.right))

Definition (AVL Balance Property)
An AVL tree is balanced when:

For every node n, balance(n) ≤ 1

This ensures a small depth
It’s relatively easy to maintain

AVL Trees 2

AVL Tree

4

2

3

7

6

5

9

8 10

Structure Property:
0, 1, or 2 children

BST Property:
Keys in Left Subtree are smaller
Keys in Right Subtree are larger

AVL Balance Property:
Left and Right subtrees have heights

that differ by at most one.

That is, all AVL Trees are BSTs, but the reverse is not true.

AVL Trees rule out unbalanced BSTs.

Tree Representation in Code 3

Node Class?
class Node {

Data data;
Node left;
Node right;

}

This Definition Leads to Redundant Code
1 boolean find(Node current, int data) {
2 if (current == null) {
3 return false;
4 }
5 else if (current.data == data) {
6 return true;
7 }
8
9 if (current.data < data) {

10 return find(current.left, data);
11 }
12 else {
13 return find(current.right, data);
14 }
15 }

But that’s what we’ve been writing! Why is it ugly?
It’s redundant
The left and right cases are the same, why write them twice?
It’s not ideomatic (e.g., the right abstraction would allow us to write
the two cases found vs. not found)

Tree Representation in Code 4

Node Class?
class Node {

Data data;
Node left;
Node right;

}

A Bad Fix
1 boolean find(Node current, int data) {
2 if (current == null) {
3 return false;
4 }
5
6 if (current.data == data) {
7 return true;
8 }
9 else {

10 Node next = null;
11 if (current.data < data) { next = current.left; }
12 else { next = curent.right; }
13 return find(next, data);
14 }
15 }

How is This Code?
int a0 = 0;
int a1 = 0;
int a2 = 0;

for (int i = 0; i < 3; i++) {
if (i == 0) { a0 = i; }
else if (i == 1) { a1 = i; }
else { a2 = i; }

}

This course is about making the right
data abstractions. This is a perfect ex-
ample of where we could improve.

Keep an array of children!

Another Try! 5

Node Class?
class Node {

Data data;
Node[] children;

}

Is This Really Any Better?
1 boolean find(Node current, int data) {
2 if (current == null) {
3 return false;
4 }
5 else if (current.data == data) {
6 return true;
7 }
8
9 int next = current.data < data ? 0 : 1;

10 return current.children[next];
11 }

Actually, yes! How do I get “the other child” in each of these versions?
1 Node getOtherChild(Node me, Node child1) {
2 if (me.left == child1) { return me.right; }
3 else { return me.left; }
4 }

vs.
1 Node getOtherChild(Node me, int child1) {
2 return me.children[1 − child1];
3 }

Since operations on binary trees are almost always symmetric, this is a
big deal for complicated operations. Keep this in mind.

The BST Worst Case 6

Worst Case

1
h = 0 insert(2)ÐÐÐÐÐ→

1
h = 1

2
h = 0

insert(3)ÐÐÐÐÐ→

1
h = 2

2
h = 1

3
h = 0

When we insert 3, we violate the AVL Balance condition. What to do?

There’s only one tree with the BST Property and the Balance Property:

FIXING The Worst Case

1
h = 2

2
h = 1

3
h = 0

fix(1)ÐÐÐÐ→
2

h = 1

1
h = 0

3
h = 0

AVL Rotation 7

This “fix” is called a rotation. We’re “rotating” the child node “up”:

Rotation
a

b

ZY
X

rotate(a)ÐÐÐÐÐ→

b

a

Z
YX

This is the only fundamental of AVL Trees!

You can either look at this as “the only way to correctly rearrange the
subtrees” or it’s helpful to think of it as gravity.

AVL Rotation 8

Rotation
a

b

ZY
X

rotate(a)ÐÐÐÐÐ→

b

a

Z
YX

The Code
1 void rotate(Node current) {
2 Node child = current.right;
3 current.right = child.left;
4 child.left = current;
5
6 child.height = child.updateHeight();
7 current.height = current.updateHeight();
8
9 current = child;

10 }

More Complicated Now. . . 9

Inserting 16
Is the result an AVL tree? If not, how do we fix it?

15

8

4

3 6

10

22

19

17

16

20

24 fix(22)ÐÐÐÐ→

15

8

4

3 6

10

19

17

16

22

20 24

This is just the same rotation in the other direction!

AVL Rotation: The Other Way 10

Rotation
a

b

Z
Y

X

rotate(a)ÐÐÐÐÐ→

b

a

Z
YX

The Code
1 void rotate(Node current) {
2 Node child = current.left;
3 current.left = child.right;
4 child.right = current;
5
6 child.height = child.updateHeight();
7 current.height = current.updateHeight();
8
9 current = child;

10 }

AVL Rotations. . . Are We Done? 11

We Want. . .

Cases We’ve Handled

Cases To Handle

Another Case 12

Second Case

1
h = 0 insert(3)ÐÐÐÐÐ→

1
h = 1

3
h = 0

insert(2)ÐÐÐÐÐ→

1
h = 2

3
h = 1

2
h = 0

When we insert 2, we violate the AVL Balance condition. What to do?

There’s only one tree with the BST Property and the Balance Property:

FIXING The Second Case

1
h = 2

3
h = 1

2
h = 0

fix(1)ÐÐÐÐ→
2

h = 1

1
h = 0

3
h = 0

It Doesn’t Look Like a Single Rotation Will Do. . . 13

Double Rotation
a

b

c

W

XY

Z

fix(a)ÐÐÐÐ→

a

b

c

W

XY

Z

First, we rotate b.

rotate(b)ÐÐÐÐÐ→

a

c

b

W

X

Y

Z

Now, we’re back
to the line case.

rotate(a)ÐÐÐÐÐ→

c

a b

W XY Z

And now it’s balanced!

And The Code. . . 14

Double Rotation
a

b

c

W

XY

Z

doubleRotate(a)ÐÐÐÐÐÐÐÐÐ→

c

a b

W XY Z

Double Rotation Code
1 void doubleRotation(Node current) {
2 rotation(current.right, RIGHT);
3 rotation(current, LEFT);
4 }

Putting Together the AVL Operations 15

AVL Operations
find(x) is identical to BST find
insert(x) by (1) doing a BST insert, and (2) fixing the tree with
either a rotation or a double rotation
delete(x) by either a similar method to insert–or doing lazy
delete

AVL Fields
We’ve seen that the code is very redundant if we use left and
right fields; so, we should use a children array
We’ve seen quick access to height is very important; so, it should
be a field

Okay, so does it work?

Does an AVL Tree Work? 16

We must guarantee that the AVL property gives us a small enough tree.
Our approach: Find a big lower bound on the number of nodes
necessary to make a tree with height h.

What is the smallest number of nodes to get a height h AVL Tree?

For h = 0
For h = 1

For h = 2

�
�
�
��S

S
S
SS

This is not
an AVL tree!

Does an AVL Tree Work? 17

What is the smallest number of nodes to get a height h AVL Tree?

f (h−2)

f (h−1)

f (h)

The general number of nodes to get
a height of h is:

f (h) = f (h−2)+ f (h−1)+1

We break down where each term comes from. We want a tree that has
the smallest number of nodes where each branch has the AVL Balance
condition.

f (h−1): To force the height to be h, we take the smallest tree of
height h−1 as one of the children
f (h−2): We are allowed to have the branches differ by one; so, we
can get a smaller number of nodes by using f (h−2)
+1 comes from the root node to join together the two branches

Does an AVL Tree Work? 18

So, now we solve our recurrence. How?

Ratio Between Terms
A good way of solving a recurrence that we expect to be of the form Xn

is to look at the ratio between terms. If f (h+1)
f (h)

> X , then

f (h+1) > X f (h) > X(X(f (h−1)) > ⋅ ⋅ ⋅ > Xn

So, we evaluate these ratios and see the following:
OUTPUT

>> 2.0
>> 2.0
>> 1.75
>> 1.7142857142857142
>> 1.6666666666666667
>> 1.65
>> 1.6363636363636365
>> 1.6296296296296295
>> 1.625
>> 1.6223776223776223
>> 1.6206896551724137
>> 1.6196808510638299
>> 1.619047619047619
>> 1.618661257606491
>> 1.618421052631579
>> ...

Proving the Closed Form 19

In this case, we see that f (h) pretty quickly converges to φ(1.618 . . .).
Before trying to prove this closed form, we should look at a few examples:

f (0) = 1 vs. (φ)0 = 1
f (1) = 2 vs. (φ)1 = φ

We want to show that f (h) > some closed form, but looking at the first
base case, 1 /> 1. So, we’ll prove f (h) > φ

h−1 instead.

Induction Proof
Base Cases: Note that f (0) = 1 > 1−1 = 0 and f (1) = 2 > φ −1 ≈ 0.618
Induction Hypothesis: Suppose that f (h) > φ

h−1 for all 0 ≤ h ≤ k for
some k ≥ 1.
Induction Step:

f (n+1) ≥ f (n)+ f (n−1)+1

> (φ n−1)+(φ n−1−1)+1 [By IH]
= φ

n−1(φ +1)+1−2

= φ
n+1−1 [By φ]

In the step labeled “by φ”, we use the property φ
2 = φ +1.

So, efficiency? 20

So, since n ≥ f (h) > φ
h−1, taking lg of both sides gives us:

lg(n) > lg(φ h−1) ≈ lg(φ h) = h lg(φ)

So, h ∈O(lgn).
Worst-case complexity of find:

O(lgn)

Worst-case complexity of insert:

O(lgn)

Tree starts balanced
A rotation is O(1) and there’s an O(lgn) path to root
(Same complexity even without one-rotation-is-enough fact)
Tree ends balanced

Worst-case complexity of buildTree:

O(n lgn)

Worst-case complexity of delete: (requires more rotations)

O(lgn)

Worst-case complexity of lazyDelete:

O(1)

So, efficiency? 20

So, since n ≥ f (h) > φ
h−1, taking lg of both sides gives us:

lg(n) > lg(φ h−1) ≈ lg(φ h) = h lg(φ)

So, h ∈O(lgn).
Worst-case complexity of find: O(lgn)

Worst-case complexity of insert: O(lgn)
Tree starts balanced
A rotation is O(1) and there’s an O(lgn) path to root
(Same complexity even without one-rotation-is-enough fact)
Tree ends balanced

Worst-case complexity of buildTree: O(n lgn)

Worst-case complexity of delete: (requires more rotations) O(lgn)

Worst-case complexity of lazyDelete: O(1)

Pros and Cons of AVL Trees 21

Pros of AVL trees
All operations logarithmic worst-case because trees are always
balanced
Height balancing adds no more than a constant factor to the speed
of insert and delete

Cons of AVL trees
Difficult to program & debug
More space for height field
Asymptotically faster but rebalancing takes a little time
Most large searches are done in database-like systems on disk and
use other structures (e.g., B-trees, our next data structure)

Some Examples 22

Example (Insert a,b,e,c,d into an AVL Tree)

insert(a)ÐÐÐÐÐ→ a insert(b)ÐÐÐÐÐ→
a

b
insert(e)ÐÐÐÐÐ→

a

b

e

rotate(a)ÐÐÐÐÐ→

b

a e
insert(c)ÐÐÐÐÐ→

b

a e

c

insert(d)ÐÐÐÐÐ→

b

a e

c

d

rotate(c)ÐÐÐÐÐ→

b

a e

d

c

rotate(e)ÐÐÐÐÐ→

b

a d

c e

Some Examples 23

Example (Which Rotation?)

9

5

2

0 3

7

11

13

Which insertions would cause a single rotation?
9

5

2

0 3

7

11

13

9

5

2

0 3

7

11

13

9

5

2

0 3

7

11

13

Some Examples 24

Example (Which Rotation?)

9

5

2

0 3

7

11

13

Which insertions would cause a double rotation?

9

5

2

0 3

7

11

13

9

5

2

0 3

7

11

13

9

5

2

0 3

7

11

13

Some Examples 25

Example (Which Rotation?)

9

5

2

0 3

7

11

13

Which insertions would cause no rotation?

9

5

2

0 3

7

11

13

9

5

2

0 3

7

11

13

9

5

2

0 3

7

11

13

Some Examples 26

Example (Insert 3, 33, 18, 32)

10

5

2 9

15

12 20

17 30

insert(3)ÐÐÐÐÐ→

10

5

2

3

9

15

12 20

17 30

insert(33)ÐÐÐÐÐÐ→

10

5

2

3

9

15

12 20

17 30

33

Some Examples 27

Example (Insert 3, 33, 18, 32)

10

5

2

3

9

15

12 20

17 30

insert(33)ÐÐÐÐÐÐ→

10

5

2

3

9

15

12 20

17 30

33

rotate(15)ÐÐÐÐÐÐ→

10

5

2

3

9

20

15

12 17

30

33
insert(18)ÐÐÐÐÐÐ→

Some Examples 28

Example (Insert 3, 33, 18, 32)

10

5

2

3

9

20

15

12 17

18

30

33

insert(32)ÐÐÐÐÐÐ→

10

5

2

3

9

20

15

12 17

18

30

33

32

rotate(33)ÐÐÐÐÐÐ→

10

5

2

3

9

20

15

12 17

18

30

32

33

Some Examples 29

Example (Insert 3, 33, 18, 32)

10

5

2

3

9

20

15

12 17

18

30

33

insert(32)ÐÐÐÐÐÐ→

10

5

2

3

9

20

15

12 17

18

30

33

32

rotate(30)ÐÐÐÐÐÐ→

10

5

2

3

9

20

15

12 17

18

32

30 33

	Introducing AVL Trees
	Tree Representation in Code
	How Does an AVL Tree Work?
	Why Does an AVL Tree Work?
	AVL Tree Examples

