
1 

CSE 332:  

NP Completeness 

Richard Anderson, Steve Seitz 

Winter 2014 

Announcements 

• Review session for the final 

– Saturday,  noon,  EEB 125 

• Final 

– Monday,  March 17, Johnson 102 

• 4:30 PM or 6:30 PM 

• 110 minutes, closed book 
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Your First Task 

Your company has to inspect a set of roads between cities 
by driving over each of them. 
 

Driving over the roads costs money (fuel), and there are a 
lot of roads. 
 

Your boss wants you to figure out how to drive over each 
road exactly once. 
 

You get a bonus if, after inspecting the last road, the car is 
back where it started. 
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Try it with paper and pencil 

Which of these can you draw without lifting your  

pencil, drawing each line only once? 

Can you start and end at the same point? 
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Historical Puzzle: Seven Bridges of Königsberg 

Pregel River 

Island of Kneiphof 

Want to cross all bridges but… 

can cross each bridge only once. 
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Euler Circuits and Tours 

• Euler tour: a path through a graph that visits each edge 
exactly once 

• Euler circuit: an Euler tour that starts and ends at the 
same vertex 

• Named after Leonhard Euler (1707-1783), who 
cracked this problem and founded graph theory in 
1736 

• Some observations for undirected graphs: 

– An Euler circuit exists iff  the graph is connected and each 
vertex has even degree (= # of edges on the vertex)  

– An Euler tour exists iff  the graph is connected and either all 
vertices have even degree or exactly two have odd degree 
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Finding Euler Circuits 
Given a connected, undirected graph G = (V,E), find an 

Euler circuit in G. 

 

Euler Circuit Existence Algorithm: 

Check to see that all vertices have even degree 

 

  Running time =  

 

Euler Circuit Algorithm:  
1. Do an edge walk from a start vertex until you 

are back at the start vertex.  Mark each edge 
you visit, and do not revisit marked edges. You 
never get stuck because of the even degree 
property.  

2. The walk is removed leaving several 
components each with the even degree 
property.  Recursively find Euler circuits for 
these.  

3. Splice all these circuits into an Euler circuit 

 

  Running time = 8 

Euler Tour 

G 

A 

B C D 

E F 

For an Euler Tour, exactly two vertices are odd, the rest 

even.  Using a similar algorithm, you can find a path 

between the two odd vertices. 
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Your Second Task 

Your boss is pleased…and assigns you a new task. 
 

Your company has to send someone by car to a set of 
cities. 

 

The primary cost is the exorbitant toll going into each city. 

 

Your boss wants you to figure out how to drive to each city 
exactly once, returning in the end to the city of origin. 
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Hamiltonian Circuits 

• Euler circuit: A cycle that goes 
through each edge exactly once 

• Hamiltonian circuit: A cycle that goes 
through each vertex exactly once 
(except the first=last one) 

• Does graph I have: 

– An Euler circuit? 

– A Hamiltonian circuit? 

• Does graph II have: 

– An Euler circuit? 

– A Hamiltonian circuit? 

• Does the Hamiltonian circuit problem 
seem easier or harder? 

B C 

D E 

G 

B C 

D E 

G I 

II 

W. R. 

Hamilton 

(1805-1865) 

Hamilton’s Icosian Game 
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Finding Hamiltonian Circuits 

• Problem: Find a Hamiltonian circuit in a 
connected, undirected graph G. 

• One solution: Search through all paths to find 
one that visits each vertex exactly once 

– Can use your favorite graph search algorithm 
(DFS!) to find various paths 

• This is an exhaustive search (“brute force”) 
algorithm. 

• Worst case  need to search all paths 

– How many paths?? 
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Analysis of our Exhaustive 

Search Algorithm 

• Worst case  need to search 

all paths 

– How many paths? 

• Can depict these paths as a 

search tree 

B C 

D E 

G 

B 

D      G     C 

G  E   D  E  C  G  E   

Etc.  Search tree of paths from B 14 

Analysis of our Exhaustive 

Search Algorithm 
• Let the average branching factor of 

each node in this tree be b  

• |V| vertices, each with  b branches 

• Total number of paths  b·b·b … ·b  

 
= 
 

• Worst case  Exponential time! 

B 

D      G     C 

G  E   D  E  C  G  E   

Etc.  

Search tree of paths from B 
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Polynomial vs. Exponential Time 

• Most of our algorithms so far have been O(log N), 

O(N), O(N log N) or O(N2) running time for inputs 

of size N 

– These are all polynomial time algorithms 

– Their running time is O(Nk) for some k > 0 

•  

Exponential time bN is asymptotically worse than 

any polynomial function Nk for any k 
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The Complexity Class P 

• The set P is defined as the set of all problems 

that can be solved in polynomial worst case time 

– Also known as the polynomial time complexity class 

– All problems that have some algorithm whose running 

time is O(Nk) for some k 

 

• Examples of problems in P: sorting, shortest 

path, Euler circuit, etc. 
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Problem Spaces 

If a problem is not polynomial-time solvable (not in 
P), then it is an exponential-time problem. 

 

Shorthand: 

– P solutions are fast 

– EXPTIME are slow 

• Sometimes viewed 

   as “intractable” 

EXPTIME 

P 
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Saving your job 

Try as you might, every solution you come up with 

for the Hamiltonian Circuit problem runs in 

exponential time. 

 

You have to report back to your boss. 
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What you’d rather not say… 

 

 

 

 

 

 
“I can’t find an efficient algorithm, I guess I’m just too dumb.” 
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What you’d like to say… 

 
 
 
 
 
 
“I can’t find an efficient algorithm, because no such 

algorithm is possible!” 

 
But can you actually say this…? 
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When is a problem easy? 

• We’ve seen some “easy” graph problems: 

– Graph search 

– Shortest-path 

– Minimum Spanning Tree 
 

• Not easy for us to come up with, but easy 
for the computer, once we know algorithm. 
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When is a problem hard? 

• Almost everything we’ve seen in class has had an 
efficient algorithm 
 

• But of course, computers can’t solve every problem 
quickly. 
 

• In fact, there are perfectly reasonable sounding 
problems that no computer could ever solve in any 
reasonable amount of time (as far as we know!). 

– The Hamiltonian Circuit problem is one of these (as 
far as we know).  More later on just how hard it is… 
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What you can say… 

 

 

 

 

 

 

“I can’t find an efficient algorithm, but neither 
can all these famous people.” 
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When is a problem hopeless? 

• Some problems are “undecideable” – no algorithm can 
be given for solving them. 

– The Halting Problem: is it possible to specify any 
algorithm, which, given an arbitrary program and input 
to that program, will always correctly determine 
whether or not that program will enter an infinite loop?   

– No! [Turing, 1936] 

 

• We’ll focus on problems that have 

    a glimmer of hope… 
Alan Turing 

(1912-1954) 
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A Glimmer of Hope 

Suppose you have a problem that is at least 

decideable.   

 

If the output can be checked for correctness in 

polynomial-time, then maybe a polynomial-time 

solution exists! 
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The Complexity Class NP 

• Definition: NP is the set of all problems for 

which a given candidate solution can be tested 

in polynomial time 

 

• Are the following in NP: 

– Hamiltonian circuit problem? 

– Euler circuit problem? 

– All polynomial time algorithms? 
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Why NP? 

• NP stands for Nondeterministic Polynomial time 

– Why “nondeterministic”?   Corresponds to algorithms 

that can guess a solution (if it exists)  the solution is 

then verified to be correct in polynomial time 

– Nondeterministic algorithms don’t exist – purely 

theoretical idea invented to understand how hard a 

problem could be 
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Problem Spaces (revisited) 

We can now augment our problem space to 
include NP as a superset of P. 

 

Whenever someone finds  

a polynomial time solution  

to a problem currently 

believed to be in NP - P,  

it moves to P. 

EXPTIME 

NP 

P 
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Your Chance to Win  

a Turing Award (and $$$) 

• It is generally believed that P  NP, i.e.  

   there are problems in NP that are not in P 

– But no one has been able to show even one such 

problem! 

– This is the fundamental open problem in theoretical 

computer science. 

– Nearly everyone has given up trying to prove it.  

Instead, theoreticians prove theorems about what 

follows once we assume P  NP ! 



6 

31 

P = NP? 

EXPTIME 

NP 

P 

EXPTIME 

P 

P = NP P  NP 

Perhaps instead P = NP, but that would seem to be  

even harder to prove… 
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What you’d like to say (revisited)… 

 

 

 

 

 

 

“I can’t find an efficient algorithm, because no such 

algorithm is possible.  And that means P ≠ NP, and now 

I’m super famous and rich, and I quit!” 
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Your Third Task 

Your boss buys your story that others couldn’t solve the last 

problem. 

 

Again, your company has to send someone by car to a set of 

cities. 

 

The primary cost is distance traveled (which translates to fuel 

costs). 

 

Your boss wants you to figure out how to drive to each city 

exactly once, then returning to the first city, while staying 

within a fixed mileage budget C. 
34 

The Traveling Salesman Problem (TSP) 

• This amounts to solving… 

      …The Traveling Salesman Problem: 

– Given a complete (fully connected) weighted graph G, 

and an integer C, 

– is there a cycle that visits all vertices with cost ≤ C? 

• One of the canonical problems in computer 

science. 

• Note difference from Hamiltonian cycle: graph is 

complete, and we care about weight. 
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Transforming HC into TSP 

• We can transform Hamiltonian Cycle into TSP. 

• Given graph G=(V, E): 

– Assign weight of 1 to each edge 

– Augment the graph with edges until it is a complete 

graph G’=(V, E’). 

– Assign weight of 2 to the new edges. 

– Let C = |V|. 

36 

Examples 

B 

D E 

G 

C 
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Polynomial-time transformation 

• G’ has a TSP tour of weight |V| iff (if and only if) 
G has a Hamiltonian Cycle. 

– Proof: “obvious” 
 

• What was the cost of transforming HC into TSP? 

 

• In the end, because there is a polynomial-time 
transformation from HC to TSP, we say TSP is 
“at least as hard as” Hamiltonian cycle. 
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What you can say… 

 

 

 

 

 

 

“I can’t find an efficient algorithm, since all these 

famous people couldn’t solve HC efficiently and I 

can prove that TSP is at least as hard.” 

39 

Satisfiability 

In 1971, Stephen Cook studied the Satisfiability 

Problem: 

– Given a Boolean formula (collections of ANDs, ORs, 

NOTs) over a set of variables, 

– is there a TRUE/FALSE assignment to the variables 

such that the Boolean formula evaluates to TRUE?  
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Satisfiability 

…and he proved something remarkable: 

 

Every problem in NP can be polynomially 

transformed to the Satisfiability Problem. 

 

Thus, Satisfiability is at least as hard as every 

other problem in NP, i.e., it is the hardest NP 

problem. 

 

We call it an “NP-complete” problem. 
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Turing Machines 

The proof is intricate and depends on a computing 
abstraction called a Turing Machine… 

 

 

 

 

 

 

which is generalized to allow guessing the answer. 
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The Steam Powered Turing Machine 

In the mid-1980s, Alan Borning attributed a 

peculiar implementation of a Turing Machine to 

Larry Ruzzo, giving rise to this famous mural: 
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NP-completeness 

• In fact, Satisfiability can be polynomially reduced to 
some other NP problems (and vice versa). 
 

• These other problems are equivalent to Satisfiability, and 
so all other problems in NP can be transformed to them, 
as well. 
 

• NP-complete problems thus form an equivalence set in 
NP (all equivalently hard, i.e., the hardest). 
 

• Solving one would give a solution for all of them! 

– If any NP-complete problem is in P, then all of NP is 
in P 
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What’s NP-complete 

• Satisfiability of logic formulas 

• All sorts of constraint problems 

• All sorts of graph problems, including: 
– Hamiltonian Circuits 

– Traveling Salesman? 

– Graph coloring: decide if the vertices of a graph be 
colored using K colors, such that no two adjacent 
vertices have the same color. 

• Not an overstatement to say that every area of 
computer science comes up against NP-
complete problems. 
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One tweak and you could be in NP-complete 

• It’s amazing how “little” tweaks on a problem 

change the complexity: 

– Euler circuit is in P, but Hamiltonian circuit is NP-

complete. 

– Shortest path between two points is computable in 

O(|V|2), but longest path is NP-complete. 
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Analyzing Your Hard Problem 

• Your problem seems really hard. 

 

• If you can transform an NP-complete problem 

into the one you’re trying to solve, then you can 

stop working on your problem! 

 

• …unless you really need that Turing award. 
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What you’d like to say (re-revisited)… 

“I showed that TSP is NP-complete, and I found an efficient 
algorithm for it, and that means P = NP, and I’ve totally 
rocked the CS world!” 

 

(Not likely!) 
48 

P, NP, NPC, and Exponential 

Time Problems 
• All currently known 

algorithms for NP-complete 
problems run in 
exponential worst case 
time 

 

• Diagram depicts 
relationship between P, NP, 
and EXPTIME (class of 
problems that provably 
require exponential time to 
solve) It is believed that  

P  NP  EXPTIME 

EXPTIME 

NP 

P 

NPC 
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Coping with NP-Completeness 

1. Settle for algorithms that are fast on average: 
Worst case still takes exponential time, but 
doesn’t occur very often.  
But some NP-Complete problems are also average-

time NP-Complete!  

2. Settle for fast algorithms that give near-optimal 
solutions: In traveling salesman, may not give 
the cheapest tour, but maybe good enough.  
But finding even approximate solutions to some NP-

Complete problems are NP-Complete! 

50 

Coping with NP-Completeness 

3. Just get the exponent as low as possible!  
Much work on exponential algorithms for 
satisfiability: in practice can often solve 
circuits with 1,000+ inputs 

But even 2n/100 will eventual hit the exponential curve! 

4. Restrict the problem: Longest Path is easy on 
trees, for example. Many hard problems are 
easy for restricted inputs. 
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Great Quick Reference 

Is this lecture complete?  Hardly, but here’s 
a good reference: 

 

Computers and Intractability:  

A Guide to the Theory of  

NP-Completeness 

by Michael S. Garey and  

David S. Johnson 

 


