CSE 332:
Disjoint Set Union/Find
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Data structure for disjoint sets?

« Represent: {3,5,7},{4,2,8}, {9}, {1,6}

e Support: find(x), union(x,
pp p(AZ..c,g (X,Y)
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Union/Find Trade-off

« Known result:

— Find and Union cannot both be done in worst-
case O(1) time with any data structure.

« We will instead aim for good amortized
complexity.

* For m operations on n elements:
— Target complexity: O(m) i.e. O(1) amortized



Tree-based Approach

Each set is a tree
 Root of each tree is the set name.
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Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward
from any given node to find the root.

Idea: reverse the pointers (make them point up from
child to parent). The result is an up-tree.
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Roots are the names of each set. @D/



Find Operation

Find(x) follow x to the root and return the root.
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Union Operation

Union(i, |) - assuming i and | roots, point i to |.
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Simple Implementation

 Array of indices

6 7 up[x] = -1 means
s |- X is a root.
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Implementation

void Union(int x, int y) ({ int Find(int x) {
assert (up[x]<0 && upl[y]l<0); while (up[x] >= 0) {
up[x] = y; x = up[x];

} }

return x;

runtime for Union: O (l\ runtime for Find.: O(”\\

Amortized complexity 1s no better.



A Bad Case

® @ 6 - O
Union(1,2)
® @ @
6’ @ Uni(-)n(2,3)
@/@ |
6‘ /@ Union(n-1,n)
@/@> Find(1) n steps!!
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Two Big Improvements

Can we do better? Yes!

1. Union-by-size
* Improve Union so that Find only takes worst
case time of O(log n).

2. Path compression
* Improve Find so that, with Union-by-size,
Find takes amortized time of almost ©(1).
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Union-by-Size

Union-by-size
— Always point the smaller tree to the root of the

larger tree
S-Union(7,1

1

)
©
@ ]
@ﬂ@\@q\
& 2

13



Example Again

© @ 6 - O
@ ©® " O

6 S-Union(2,3)
@ S-Union(n-1,n)

6@% Find(1) constant time
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Analysis of Union-by-Size

« Theorem: With union-by-size an up-tree of height h has size
at least 2.

* Proof by induction
— Base case: h=0. The up-tree has one node, 2° = 1
— Inductive hypothesis: Assume true for h-1

— QObservation: tree gets taller only as a result of a union.
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Analysis of Union-by-Size

» What is worst case complexity of Find(x) in
an up-tree forest of n nodes?
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* (Amortized complexity is no better.)
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Worst Case for Union-by-Size

n/2 Unions-by-size

38688888

n/4 Unions-by-size



Example of Worst Cast (cont’)

After n-1 =n/2 + n/4 + ...+ 1 Unions-by-size
5 ¢ ;% Qﬁ%\ i

O

If there are n = 2% nodes then the longest
path from leaf to root has length k.
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Array Implementation
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Can store separate size array:

1 2 345 6 7
up |-111]-1]7]7|5]|-1
size | 2 1 4
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Elegant Array Implementation
2 1 4
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Better, store sizes in the up array:

1 23456 7
up |-2[1]-1]7]7]5]-4

Negative up-values correspond to sizes of roots. "



Code for Union-by-Size

S-Union (i, j) {
// Collect sizes
si = —up[i];
sj = —up[3jl;

// verify i and j are roots
assert (si >=0 && sj >=0)

// point smaller sized tree to
// root of larger, update size
if (si < sj) {

up[i] = J;

up[j]l = —(si + s3J);
else {

up[j] = i;

up [i] —(s1 + s3J);

}



Path Compression

« To improve (amortized) complexity:
— when going up the tree, improve nodes on the path!

* On a Find operation point all the nodes on the search path
directly to the root. This is called “path compression.”
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Self-Adjustment Works

-Find(x)
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Draw the result of Find(5):




Code for Path Compression Find

PC-Find (i) {
//£find root
j = 1i;
while (up[j] >= 0) {
J = upl[jl;
root = j;

//compress path
if (i !'= root) {
parent = upl[i];
while (parent != root) {
up[i] = root;
i = parent;
parent = up[parent];
}
}

return (root)

}

25



Complexity of
Union-by-Size + Path Compression

« Worst case time complexity for...
— ...a single Union-by-size is: O(ls
_ ...asingle PC-Find is: O Clogn

« Time complexity for m> n operations on n
elements has been shown to be O(m log* n).

[See Weiss for proof.]
— Amortized complexity is then O(log™ n)
— What is log* ?
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log™ n

log* n = number of times you need to apply
log to bring value down to at most 1

0g*2 =1

09" 4 =log* 22 =2

0g* 16 = log* 22 = 3 (log log log 16 = 1)

0g* 65536 = log” 0222 _ 4 (log log log log 65536 = 1)
0g* 269936 = .. ......... ~ |og* (2 x 1019.728) = 5

log * n <5 for all reasonable n.
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The Tight Bound

In fact, Tarjan showed the time complexity for
m > n operations on n elements is:

O(m o(m, n))
Amortized complexity is then @(a(m, n)) .
What is a(m, n)?
— Inverse of Ackermann’s function.

— For reasonable values of m, n, grows
even slower than log * n. So, it's even
“more constant.”

Proof is beyond scope of this class. A simple
algorithm can lead to incredibly hardcore
analysis!
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