CSE 332:

Locks and Deadlocks

Richard Anderson, Steve Seitz
Winter 2014

Recall Bank Account Problem

class BankAccount {
private int balance = 0;
synchronized int getBalance ()
{ return balance; }
synchronized void setBalance (int x)
{ balance = x; }
synchronized void withdraw (int amount) ({
int b = getBalance();
if (amount > Db)
throw ..
setBalance (b - amount);

}

// deposit would also use synchronized

Call to setBalance in withdraw
- tries to lock this

Re-Entrant Lock

* A re-entrant lock (a.k.a. recursive lock)

- If athread holds a lock, subsequent attempts to acquire the
same lock in the same thread won'’t block

— withdraw can acquire the lock and setBalance can also
acquire it

- implemented by maintaining a count of how many times each
lock is acquired in each thread, and decrementing the count
on each release.

» Java synchronize locks are re-entrant

Locking Guidelines

Correctness

Consistency: make it well-defined
Granularity: coarse to fine

Critical Sections: make them small, atomic
Leverage libraries

Consistent Locking

» Clear mapping of locks to resources
- followed by all methods
- clearly documented
- same lock can guard multiple resources

QQ” ® ‘ ”

/

6 0606 o

- what’s a resource? Conceptual:
- object
- field
- data structure (e.g., linked list, hash table) 0

Lock Granularity

« Coarse grained: fewer locks, more objects per lock
e.g., one lock for entire data structure (e.g., linked list)

advantage: Eqs;((S'm,\?:ef (68.(M«t"\{‘(d/\‘-\g,,
disadvantage: Jp¢ ?4ﬂl(&um

 Fine gralned more locks, fewer objects per lock
e.g., one lock for each item in the linked list

o

SMLT/; &A— (oq\/se’ a&& ot [0&‘8\‘¥ W%fg@ﬁ;q\«b
of cofre ""Si\

Lock Granularity

Example: hashtable with separate chaining
- coarse grained: one lock for whole table
- fine grained: one lock for each bucket

Which supports more concurrency for insert and

lookup? R,u

Which makes implementing resize easier?
Coaryt

Suppose hashtable maintains a numElements field. Which locking
approach is better?
(DAL,

Critical Sections

* Critical sections:
- how much code executes while you hold the lock?
- want critical sections to be short

- make them “atomic”: think about smallest sequence of
operations that have to occur at once (without data races,
interleavings)

Critical Sections

« Suppose we want to change a value in a hash table
assume one lock for the entire table
computing the new value takes a long time (“expensive”)

synchronized (lock) ({ _ ((V‘»Gu‘e((
} vl = table.lookup(k);K-\

v2 = expensive(vl);

§YMLLW\\'~I;(D(LJ(Q\ { table.remove (k) ;

table.insert (k,v2);
}

Critical Sections

« Suppose we want to change a value in the hash table
- assume one lock for the entire table
- computing the new value takes a long time (“expensive”)
- will this work?

synchronized (lock) {
vl = table.lookup (k) ;

}

v2 = expensive (vl);

synchronized (lock) {
table. remove (k) ;
table.insert (k, v2) ;

}

10

Critical Sections

« Suppose we want to change a value in the hash table
- assume one lock for the entire table
- computing the new value takes a long time (“expensive”)

- convoluted fix:
done = false;
while (!done) {
synchronized (lock) {
vl = table.lookup (k) ;
}
v2 expensive (vl) ;
synchronized (lock) {
if (table.lookup (k)==v1l) {
done = true; // 1 can exit the loop!
table.remove (k) ;
table.insert (k, v2);

1}

Leverage Libraries

» Use built-in libraries whenever possible

* In “real life”, it is unusual to have to write your own
data structure from scratch
— Implementations provided in standard libraries

— Point of CSE332 is to understand the key trade-offs,
abstractions, and analysis of such implementations

« Especially true for concurrent data structures

— Very difficult to provide fine-grained synchronization without
race conditions

— Standard thread-safe libraries like Concurrent HashMap
written by world experts

12

Another Bank Operation

Consider transferring money:

class BankAccount ({

synchronized void withdraw(int amt) ({..}
synchronized void deposit (int amt) {..}
synchronized void transferTo(int amt,
BankAccount a)
this.withdraw (amt) ;
a.deposit (amt) ;
}
}

What can go wrong?

13

Deadlock

x and y are two different accounts

acquire lock for x

withdraw from x
acquire lock for y

withdraw from y

Time

block on lock for x
block on lock for y

Thread 1: x.transferTo (1, y) Thread 2: y.transferTo (1, x)

14

Dining Philosopher's Problem

« 5 Philosopher’s eating rice around a table
« one chopstick to the left and right of each
« first grab the one on your left, then on your right...

15

Deadlock = Cycles

« Multiple threads depending on each other in a cycle

()
10

— T2 has lock that T1 needs
— T3 has lock that T2 needs
— T1 has lock that T3 needs

» Solution? C(_ &} &\0(4— Q\Lem.»@(e OO '@\Kcﬁ&
o\mjma U l“’S

Ao WL

How to Fix Deadlock?

In Banking example

class BankAccount ({

synchronized void withdraw(int amt) ({..}
synchronized void deposit (int amt) {..}
asyrehronized void transferTo(int amt,
BankAccount a) {
this.withdraw (amt) ;
a.deposit (amt) ;
}
}

17

How to Fix Deadlock?

Separate withdraw from deposit

class BankAccount ({

synchronized void withdraw(int amt) ({..}
synchronized void deposit (int amt) {..}
void transferTo(int amt,
BankAccount a) {
this.withdraw (amt) ;
a.deposit (amt) ;
}
}

Problems?

18

Possible Solutions

1. transferTo not synchronized
— exposes intermediate state after withdraw before deposit
— may be okay here, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for each pair of accounts
allowing transfers between them

— works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique ID and always acquire locks in
the same ID order

— Entire program should obey this order to avoid cycles

19

Ordering Accounts

Transfer from bank
account 5 to account 9

1. lock A5

2. lock A9

3. withdraw from A5
4. depositto A9

20

Ordering Accounts

Transfer from bank Transfer from bank
account 5 to account 9 account 9 to account 5
1. lock A5 1. lock AS
2. lock A9 2. lock &9
3. withdraw from A5 3. withdraw from A9

4. depositto A9 4. deposit to AC

21

Ordering Accounts

Transfer from bank Transfer from bank
account 5 to account 9 account 9 to account 5
1. lock A5 1. lock
2. lock A9 2. lock
3. withdraw from A5 3. withdraw from
4. depositto A9 4. deposit to

No interleavings will produce deadlock!
— T1 cannot block on A9 until it has A5

— T2 cannot acquire A9 until it has A5 .

Banking Without Deadlocks

class BankAccount {

private int acctNumber; // must be unique
void transferTo(int amt, BankAccount a) {
if (this.acctNumber < a.acctNumber)
synchronized (this) {
synchronized(a) ({
this.withdraw (amt) ;
a.deposit (amt) ;
}}
else
synchronized(a) ({
synchronized (this) {
this.withdraw (amt) ;
a.deposit (amt) ;

)

23

Lock Ordering

« Useful in many situations

— e.g., when moving an item from work queue A to B, need to
acquire locks in a particular order

« Doesn’t always work
— not all objects can be naturally ordered
— Java StringBuffer append is subject to deadlocks
» thread 1: append string A onto string B
» thread 2: append string B onto string A

24

Locking a Hashtable

« Consider a hashtable with
— many simultaneous lookup operations
— rare insert operations

« What's the right locking strategy?

25

Read vs. Write Locks

 Recall race conditions

— two simultaneous write to same location
— one write, one simultaneous read

* But two simultaneous reads OK

* Synchronize is too strict
— Dblocks simultaneous reads

26

Readers/Writer Locks

A new synchronization ADT: The readers/writer lock

« Alock’s states fall into three categories: 0 < writers < 1
— ‘notheld” 0 <readers
— “held for writing” by one thread writers*readers==

— “held for reading” by one or more threads

- new: make a new lock, initially “not held”

- acquire_write: block if currently “held for reading” or “held for
writing”, else make “held for writing”

- release write: make “not held”

- acquire_read: block if currently “held for writing”, else make/keep
“held for reading” and increment readers count

- release_read: decrement readers count, if 0, make “not held”

27

In Java

Java’'s synchronized statement does not support readers/writer

Instead, library

java.util.concurrent.locks.ReentrantReadWriteLock

*Different interface: methods readLock and writeLock return
objects that themselves have lock and unlock methods

28

Concurrency Summary

Parallelism is powerful, but introduces new concurrency issues:
— Data races

— Interleaving

— Deadlocks

Requires synchronization
— Locks for mutual exclusion

Guidelines for correct use help avoid common pitfalls

29

