
1

CSE 332:
Locks and Deadlocks

Richard Anderson, Steve Seitz

Winter 2014

Recall Bank Account Problem

2

class BankAccount {

private int balance = 0;

synchronized int getBalance()

{ return balance; }

synchronized void setBalance(int x)

{ balance = x; }

synchronized void withdraw(int amount) {

int b = getBalance();

if(amount > b)

throw …

setBalance(b – amount);

}

// deposit would also use synchronized

}

Call to setBalance in withdraw
- tries to lock this

Re-Entrant Lock

• A re-entrant lock (a.k.a. recursive lock)
- If a thread holds a lock, subsequent attempts to acquire the

same lock in the same thread won’t block

- withdraw can acquire the lock and setBalance can also

acquire it

- implemented by maintaining a count of how many times each
lock is acquired in each thread, and decrementing the count
on each release.

• Java synchronize locks are re-entrant

3

Locking Guidelines

• Correctness

• Consistency: make it well-defined

• Granularity: coarse to fine

• Critical Sections: make them small, atomic

• Leverage libraries

4

Consistent Locking

• Clear mapping of locks to resources

- followed by all methods

- clearly documented

- same lock can guard multiple resources

- what’s a resource? Conceptual:

- object

- field

- data structure (e.g., linked list, hash table) 5

Lock Granularity

• Coarse grained: fewer locks, more objects per lock

- e.g., one lock for entire data structure (e.g., linked list)

- advantage:

- disadvantage:

• Fine grained: more locks, fewer objects per lock

- e.g., one lock for each item in the linked list

6

…

…

Lock Granularity

Example: hashtable with separate chaining

- coarse grained: one lock for whole table

- fine grained: one lock for each bucket

Which supports more concurrency for insert and

lookup?

Which makes implementing resize easier?

Suppose hashtable maintains a numElements field. Which locking

approach is better?

7

Critical Sections

• Critical sections:
- how much code executes while you hold the lock?

- want critical sections to be short

- make them “atomic”: think about smallest sequence of
operations that have to occur at once (without data races,
interleavings)

8

Critical Sections

• Suppose we want to change a value in a hash table

- assume one lock for the entire table

- computing the new value takes a long time (“expensive”)

9

synchronized(lock) {

v1 = table.lookup(k);

v2 = expensive(v1);

table.remove(k);

table.insert(k,v2);

}

synchronized(lock) {

v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lock) {

table.remove(k);

table.insert(k,v2);

}

Critical Sections

• Suppose we want to change a value in the hash table

- assume one lock for the entire table

- computing the new value takes a long time (“expensive”)

- will this work?

10

• Suppose we want to change a value in the hash table

- assume one lock for the entire table

- computing the new value takes a long time (“expensive”)

- convoluted fix:

Critical Sections

11

done = false;

while(!done) {

synchronized(lock) {

v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lock) {

if(table.lookup(k)==v1) {

done = true; // I can exit the loop!

table.remove(k);

table.insert(k,v2);

}}}

Leverage Libraries

• Use built-in libraries whenever possible

• In “real life”, it is unusual to have to write your own

data structure from scratch

– Implementations provided in standard libraries

– Point of CSE332 is to understand the key trade-offs,
abstractions, and analysis of such implementations

• Especially true for concurrent data structures

– Very difficult to provide fine-grained synchronization without
race conditions

– Standard thread-safe libraries like ConcurrentHashMap

written by world experts

12

Another Bank Operation

Consider transferring money:

What can go wrong?
13

class BankAccount {

…

synchronized void withdraw(int amt) {…}

synchronized void deposit(int amt) {…}

synchronized void transferTo(int amt,

BankAccount a) {

this.withdraw(amt);

a.deposit(amt);

}

}

Deadlock

x and y are two different accounts

14

acquire lock for x

withdraw from x

block on lock for y

acquire lock for y

withdraw from y

block on lock for x

Thread 1: x.transferTo(1,y)

T
im

e

Thread 2: y.transferTo(1,x)

Dining Philosopher’s Problem

• 5 Philosopher’s eating rice around a table

• one chopstick to the left and right of each

• first grab the one on your left, then on your right…

15

Deadlock = Cycles

• Multiple threads depending on each other in a cycle

– T2 has lock that T1 needs

– T3 has lock that T2 needs

– T1 has lock that T3 needs

• Solution?

16

T1

T3

T2

How to Fix Deadlock?

In Banking example

17

class BankAccount {

…

synchronized void withdraw(int amt) {…}

synchronized void deposit(int amt) {…}

synchronized void transferTo(int amt,

BankAccount a) {

this.withdraw(amt);

a.deposit(amt);

}

}

How to Fix Deadlock?

Separate withdraw from deposit

Problems?
18

class BankAccount {

…

synchronized void withdraw(int amt) {…}

synchronized void deposit(int amt) {…}

synchronized void transferTo(int amt,

BankAccount a) {

this.withdraw(amt);

a.deposit(amt);

}

}

Possible Solutions

19

1. transferTo not synchronized

– exposes intermediate state after withdraw before deposit

– may be okay here, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for each pair of accounts
allowing transfers between them

– works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique ID and always acquire locks in
the same ID order

– Entire program should obey this order to avoid cycles

Ordering Accounts

Transfer from bank

account 5 to account 9

1. lock A5

2. lock A9

3. withdraw from A5

4. deposit to A9

20

A5 A9

Ordering Accounts

Transfer from bank

account 5 to account 9

1. lock A5

2. lock A9

3. withdraw from A5

4. deposit to A9

21

A5 A9

Transfer from bank

account 9 to account 5

1. lock

2. lock

3. withdraw from

4. deposit to

A5 A9

Ordering Accounts

Transfer from bank

account 5 to account 9

1. lock A5

2. lock A9

3. withdraw from A5

4. deposit to A9

22

A5 A9

Transfer from bank

account 9 to account 5

1. lock

2. lock

3. withdraw from

4. deposit to

A5 A9

No interleavings will produce deadlock!

– T1 cannot block on A9 until it has A5

– T2 cannot acquire A9 until it has A5

Banking Without Deadlocks

23

class BankAccount {

…

private int acctNumber; // must be unique

void transferTo(int amt, BankAccount a) {

if(this.acctNumber < a.acctNumber)

synchronized(this) {

synchronized(a) {

this.withdraw(amt);

a.deposit(amt);

}}

else

synchronized(a) {

synchronized(this) {

this.withdraw(amt);

a.deposit(amt);

}}

}

}

Lock Ordering

• Useful in many situations

– e.g., when moving an item from work queue A to B, need to
acquire locks in a particular order

• Doesn’t always work

– not all objects can be naturally ordered

– Java StringBuffer append is subject to deadlocks

‣ thread 1: append string A onto string B

‣ thread 2: append string B onto string A

24

Locking a Hashtable

• Consider a hashtable with
– many simultaneous lookup operations

– rare insert operations

• What’s the right locking strategy?

25

Read vs. Write Locks

• Recall race conditions
– two simultaneous write to same location

– one write, one simultaneous read

• But two simultaneous reads OK

• Synchronize is too strict
– blocks simultaneous reads

26

Readers/Writer Locks

27

A new synchronization ADT: The readers/writer lock

• A lock’s states fall into three categories:

– “not held”

– “held for writing” by one thread

– “held for reading” by one or more threads

• new: make a new lock, initially “not held”

• acquire_write: block if currently “held for reading” or “held for

writing”, else make “held for writing”

• release_write: make “not held”

• acquire_read: block if currently “held for writing”, else make/keep

“held for reading” and increment readers count

• release_read: decrement readers count, if 0, make “not held”

0 ≤ writers ≤ 1

0 ≤ readers

writers*readers==0

In Java

Java’s synchronized statement does not support readers/writer

Instead, library

java.util.concurrent.locks.ReentrantReadWriteLock

•Different interface: methods readLock and writeLock return
objects that themselves have lock and unlock methods

28

Concurrency Summary

29

• Parallelism is powerful, but introduces new concurrency issues:

– Data races

– Interleaving

– Deadlocks

• Requires synchronization

– Locks for mutual exclusion

• Guidelines for correct use help avoid common pitfalls

