CSE 332:

Locks and Deadlocks

Richard Anderson, Steve Seitz
Winter 2014

Recall Bank Account Problem

class BankAccount {
private int balance = 0;
synchronized int getBalance ()
{ return balance; }
synchronized void setBalance (int x)
{ balance = x; }
synchronized void withdraw(int amount) {
int b = getBalance() ;
if (amount > b)
throw ..
setBalance (b — amount) ;

}

// deposit would also use synchronized

Call to setBalance in withdraw
- tries to lock this

Re-Entrant Lock

* A re-entrant lock (a.k.a. recursive lock)

- If athread holds a lock, subsequent attempts to acquire the
same lock in the same thread won’t block

- withdraw can acquire the lock and setBalance can also
acquire it

- implemented by maintaining a count of how many times each
lock is acquired in each thread, and decrementing the count
on each release.

« Java synchronize locks are re-entrant

Locking Guidelines

Correctness

Consistency. make it well-defined
Granularity: coarse to fine

Critical Sections: make them small, atomic
Leverage libraries

Consistent Locking

« Clear mapping of locks to resources
- followed by all methods
- clearly documented
- same lock can guard multiple resources

QQ” @ Q ”

/

6 606 ©

- what's a resource? Conceptual:
- object
- field
- data structure (e.g., linked list, hash table) 5

Lock Granularity

« Coarse grained: fewer locks, more objects per lock
e.g., one lock for entire data structure (e.g., linked list)

advantage:
disadvantage:

* Fine grained: more locks, fewer objects per lock
e.g., one lock for each item in the linked list

0. o

3, 06 6

Lock Granularity

Example: hashtable with separate chaining
- coarse grained: one lock for whole table
- fine grained: one lock for each bucket

Which supports more concurrency for insert and
lookup?

Which makes implementing resize easier?

Suppose hashtable maintains a numElements field. Which locking
approach is better?

Critical Sections

* Critical sections:

- how much code executes while you hold the lock?
- want critical sections to be short

- make them “atomic”. think about smallest sequence of
operations that have to occur at once (without data races,
Interleavings)

Critical Sections

e Suppose we want to change a value in a hash table
- assume one lock for the entire table

- computing the new value takes a long time (“expensive”)

synchronized (lock) {
vl = table.lookup (k) ;
v2 = expensive (vl);
table.remove (k) ;
table.insert (k,v2) ;

Critical Sections

e Suppose we want to change a value in the hash table
- assume one lock for the entire table
- computing the new value takes a long time (“expensive”)
- will this work?

synchronized (lock) {
vl = table.lookup (k) ;
}
v2 expensive (vl) ;
synchronized (lock) {
table.remove (k) ;
table.insert (k,v2) ;

}

10

Critical Sections

e Suppose we want to change a value in the hash table
- assume one lock for the entire table
- computing the new value takes a long time (“expensive”)

- convoluted fix:
done = false;
while ('done) {
synchronized (lock) {
vl = table.lookup (k) ;
}
v2 = expensive (vl) ;
synchronized (lock) {
if (table.lookup (k)==v1l) {
done = true; // 1 can exit the loop!
table. remove (k) ;
table.insert (k,v2) ;

11}

Leverage Libraries

« Use built-in libraries whenever possible

* In “real life”, it is unusual to have to write your own
data structure from scratch

— Implementations provided in standard libraries

— Point of CSE332 is to understand the key trade-offs,
abstractions, and analysis of such implementations

« Especially true for concurrent data structures

— Very difficult to provide fine-grained synchronization without
race conditions

— Standard thread-safe libraries like ConcurrentHashMap
written by world experts

12

Another Bank Operation

Consider transferring money:

class BankAccount {

synchronized void withdraw(int amt) {..}
synchronized void deposit(int amt) {..}
synchronized void transferTo(int amt,
BankAccount a) {
this.withdraw (amt) ;
a.deposit (amt) ;
}
}

What can go wrong?

13

Deadlock

x and y are two different accounts

acquire lock for x

withdraw from x
acquire lock for y
withdraw from y

Time

block on lock for x

block on lock for y

Thread 1: x. transferTo (1,y) Thread 2: y.transferTo (1, x)

14

Dining Philosopher’'s Problem

« 5 Philosopher’s eating rice around a table
« one chopstick to the left and right of each
« first grab the one on your left, then on your right...

15

Deadlock = Cycles

« Multiple threads depending on each other in a cycle

— T2 has lock that T1 needs
— T3 has lock that T2 needs
— T1 has lock that T3 needs

« Solution?

16

How to Fix Deadlock?

In Banking example

class BankAccount {

synchronized void withdraw(int amt) {..}
synchronized void deposit(int amt) {..}
synchronized void transferTo(int amt,
BankAccount a) {
this.withdraw (amt) ;
a.deposit (amt) ;
}
}

17

How to Fix Deadlock?

Separate withdraw from deposit

class BankAccount {

synchronized void withdraw(int amt) {..}
synchronized void deposit(int amt) {..}
void transferTo (int amt,
BankAccount a) {
this.withdraw (amt) ;
a.deposit (amt) ;
}
}

Problems?

18

Possible Solutions

1. transferTo not synchronized
— exposes intermediate state after withdraw before deposit

— may be okay here, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for each pair of accounts
allowing transfers between them

— works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique ID and always acquire locks in
the same ID order

— Entire program should obey this order to avoid cycles

19

Ordering Accounts

Transfer from bank
account 5 to account 9

1. lock A5

2. lock A9

3. withdraw from A5
4. deposit to A9

20

Ordering Accounts

Transfer from bank Transfer from bank
account 5 to account 9 account 9 to account 5
1. lock A5 1. lock
2. lock A9 2. lock
3. withdraw from A5 3. withdraw from

4. depositto A9 4. deposit to

21

Ordering Accounts

Transfer from bank Transfer from bank
account 5 to account 9 account 9 to account 5
1. lock A5 1. lock
2. lock A9 2. lock
3. withdraw from A5 3. withdraw from
4. depositto A9 4. deposit to

No interleavings will produce deadlock!
— T1 cannot block on A9 until it has A5

— T2 cannot acquire A9 until it has A5 -

Banking Without Deadlocks

class BankAccount {

private int acctNumber; // must be unique
void transferTo(int amt, BankAccount a) {
if (this.acctNumber < a.acctNumber)
synchronized (this) {
synchronized(a) {
this.withdraw (amt) ;
a.deposit(amt) ;
}}
else
synchronized(a) ({
synchronized (this) {
this.withdraw (amt) ;
a.deposit(amt) ;

)

23

Lock Ordering

« Useful in many situations

— e.g., when moving an item from work queue A to B, need to
acquire locks in a particular order

* Doesn’t always work
— not all objects can be naturally ordered
— Java StringBuffer append is subject to deadlocks
» thread 1. append string A onto string B
» thread 2: append string B onto string A

24

Locking a Hashtable

« Consider a hashtable with
— many simultaneous lookup operations
— rare insert operations

« What's the right locking strategy?

25

Read vs. Write Locks

 Recall race conditions

two simultaneous write to same location
one write, one simultaneous read

But two simultaneous reads OK

« Synchronize is too strict
— blocks simultaneous reads

26

Readers/Writer Locks

A new synchronization ADT: The readers/writer lock

* Alock’s states fall into three categories:
— “not held”
— “held for writing” by one thread

0 < writers <1
0 <readers
writers*readers==

— “held for reading” by one or more threads

« new: make a new lock, initially “not held”

« acquire write: block if currently “held for reading” or “held for
writing”, else make “held for writing”

- release write: make "not held”

- acquire read: block if currently “held for writing”, else make/keep
“held for reading” and increment readers count

- release read: decrement readers count, if 0, make “not held”

27

In Java

Java’'s synchronized statement does not support readers/writer

Instead, library

java.util.concurrent.locks.ReentrantReadWriteLock

*Different interface: methods readLock and writeLock return
objects that themselves have 1lock and unlock methods

28

Concurrency Summary

Parallelism is powerful, but introduces new concurrency ISsues:
— Data races

— Interleaving

— Deadlocks

Requires synchronization
— Locks for mutual exclusion

Guidelines for correct use help avoid common pitfalls

29

