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Recall Bank Account Problem

class BankAccount {
private int balance = 0;
synchronized int getBalance ()
{ return balance; }
synchronized void setBalance (int x)
{ balance = x; }
synchronized void withdraw(int amount) {
int b = getBalance() ;
if (amount > b)
throw ..
setBalance (b — amount) ;

}

// deposit would also use synchronized

Call to setBalance in withdraw
- tries to lock this



Re-Entrant Lock

* A re-entrant lock (a.k.a. recursive lock)

- If athread holds a lock, subsequent attempts to acquire the
same lock in the same thread won’t block

- withdraw can acquire the lock and setBalance can also
acquire it

- implemented by maintaining a count of how many times each
lock is acquired in each thread, and decrementing the count
on each release.

« Java synchronize locks are re-entrant



Locking Guidelines

Correctness

Consistency. make it well-defined
Granularity: coarse to fine

Critical Sections: make them small, atomic
Leverage libraries



Consistent Locking

« Clear mapping of locks to resources
- followed by all methods
- clearly documented
- same lock can guard multiple resources
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- what's a resource? Conceptual:
- object
- field
- data structure (e.g., linked list, hash table) 5



Lock Granularity

« Coarse grained: fewer locks, more objects per lock
e.g., one lock for entire data structure (e.g., linked list)

advantage:
disadvantage:

* Fine grained: more locks, fewer objects per lock
e.g., one lock for each item in the linked list
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Lock Granularity

Example: hashtable with separate chaining
- coarse grained: one lock for whole table
- fine grained: one lock for each bucket

Which supports more concurrency for insert and
lookup?

Which makes implementing resize easier?

Suppose hashtable maintains a numElements field. Which locking
approach is better?



Critical Sections

* Critical sections:

- how much code executes while you hold the lock?
- want critical sections to be short

- make them “atomic”. think about smallest sequence of
operations that have to occur at once (without data races,
Interleavings)



Critical Sections

e Suppose we want to change a value in a hash table
- assume one lock for the entire table

- computing the new value takes a long time (“expensive”)

synchronized (lock) {
vl = table.lookup (k) ;
v2 = expensive (vl);
table.remove (k) ;
table.insert (k,v2) ;



Critical Sections

e Suppose we want to change a value in the hash table
- assume one lock for the entire table
- computing the new value takes a long time (“expensive”)
- will this work?

synchronized (lock) {
vl = table.lookup (k) ;
}
v2 expensive (vl) ;
synchronized (lock) {
table.remove (k) ;
table.insert (k,v2) ;

}

10



Critical Sections

e Suppose we want to change a value in the hash table
- assume one lock for the entire table
- computing the new value takes a long time (“expensive”)

- convoluted fix:
done = false;
while ('done) {
synchronized (lock) {
vl = table.lookup (k) ;
}
v2 = expensive (vl) ;
synchronized (lock) {
if (table.lookup (k)==v1l) {
done = true; // 1 can exit the loop!
table. remove (k) ;
table.insert (k,v2) ;
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Leverage Libraries

« Use built-in libraries whenever possible

* In “real life”, it is unusual to have to write your own
data structure from scratch

— Implementations provided in standard libraries

— Point of CSE332 is to understand the key trade-offs,
abstractions, and analysis of such implementations

« Especially true for concurrent data structures

— Very difficult to provide fine-grained synchronization without
race conditions

— Standard thread-safe libraries like ConcurrentHashMap
written by world experts
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Another Bank Operation

Consider transferring money:

class BankAccount {

synchronized void withdraw(int amt) {..}
synchronized void deposit(int amt) {..}
synchronized void transferTo(int amt,
BankAccount a) {
this.withdraw (amt) ;
a.deposit (amt) ;
}
}

What can go wrong?
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Deadlock

x and y are two different accounts

acquire lock for x

withdraw from x
acquire lock for y
withdraw from y

Time

block on lock for x

block on lock for y

Thread 1: x. transferTo (1,y) Thread 2: y.transferTo (1, x)
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Dining Philosopher’'s Problem

« 5 Philosopher’s eating rice around a table
« one chopstick to the left and right of each
« first grab the one on your left, then on your right...
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Deadlock = Cycles

« Multiple threads depending on each other in a cycle

— T2 has lock that T1 needs
— T3 has lock that T2 needs
— T1 has lock that T3 needs

« Solution?
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How to Fix Deadlock?

In Banking example

class BankAccount {

synchronized void withdraw(int amt) {..}
synchronized void deposit(int amt) {..}
synchronized void transferTo(int amt,
BankAccount a) {
this.withdraw (amt) ;
a.deposit (amt) ;
}
}
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How to Fix Deadlock?

Separate withdraw from deposit

class BankAccount {

synchronized void withdraw(int amt) {..}
synchronized void deposit(int amt) {..}
void transferTo (int amt,
BankAccount a) {
this.withdraw (amt) ;
a.deposit (amt) ;
}
}

Problems?
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Possible Solutions

1. transferTo not synchronized
— exposes intermediate state after withdraw before deposit

— may be okay here, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for each pair of accounts
allowing transfers between them

— works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique ID and always acquire locks in
the same ID order

— Entire program should obey this order to avoid cycles
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Ordering Accounts

Transfer from bank
account 5 to account 9

1. lock A5

2. lock A9

3. withdraw from A5
4. deposit to A9
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Ordering Accounts

Transfer from bank Transfer from bank
account 5 to account 9 account 9 to account 5
1. lock A5 1. lock
2. lock A9 2. lock
3. withdraw from A5 3. withdraw from

4. depositto A9 4. deposit to
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Ordering Accounts

Transfer from bank Transfer from bank
account 5 to account 9 account 9 to account 5
1. lock A5 1. lock
2. lock A9 2. lock
3. withdraw from A5 3. withdraw from
4. depositto A9 4. deposit to

No interleavings will produce deadlock!
— T1 cannot block on A9 until it has A5

— T2 cannot acquire A9 until it has A5 -



Banking Without Deadlocks

class BankAccount {

private int acctNumber; // must be unique
void transferTo(int amt, BankAccount a) {
if (this.acctNumber < a.acctNumber)
synchronized (this) {
synchronized(a) {
this.withdraw (amt) ;
a.deposit(amt) ;
}}
else
synchronized(a) ({
synchronized (this) {
this.withdraw (amt) ;
a.deposit(amt) ;

)
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Lock Ordering

« Useful in many situations

— e.g., when moving an item from work queue A to B, need to
acquire locks in a particular order

* Doesn’t always work
— not all objects can be naturally ordered
— Java StringBuffer append is subject to deadlocks
»  thread 1. append string A onto string B
»  thread 2: append string B onto string A
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Locking a Hashtable

« Consider a hashtable with
— many simultaneous lookup operations
— rare insert operations

« What's the right locking strategy?
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Read vs. Write Locks

 Recall race conditions

two simultaneous write to same location
one write, one simultaneous read

But two simultaneous reads OK

« Synchronize is too strict
— blocks simultaneous reads
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Readers/Writer Locks

A new synchronization ADT: The readers/writer lock

* Alock’s states fall into three categories:
— “not held”
— “held for writing” by one thread

0 < writers <1
0 <readers
writers*readers==

— “held for reading” by one or more threads

« new: make a new lock, initially “not held”

« acquire write: block if currently “held for reading” or “held for
writing”, else make “held for writing”

- release write: make "not held”

- acquire read: block if currently “held for writing”, else make/keep
“held for reading” and increment readers count

- release read: decrement readers count, if 0, make “not held”
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In Java

Java’'s synchronized statement does not support readers/writer

Instead, library

java.util.concurrent.locks.ReentrantReadWriteLock

*Different interface: methods readLock and writeLock return
objects that themselves have 1lock and unlock methods
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Concurrency Summary

Parallelism is powerful, but introduces new concurrency ISsues:
— Data races

— Interleaving

— Deadlocks

Requires synchronization
— Locks for mutual exclusion

Guidelines for correct use help avoid common pitfalls
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