
1

CSE 332:

Concurrency and Locks

Richard Anderson, Steve Seitz

Winter 2014

Banking
Two threads both trying to withdraw(100) from the same account:

•Assume initial balance 150

class BankAccount {

 private int balance = 0;

 int getBalance() { return balance; }

 void setBalance(int x) { balance = x; }

 void withdraw(int amount) {

 int b = getBalance();

 if(amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount);

 }

 … // other operations like deposit, etc.

}

x.withdraw(100);

Thread 1

x.withdraw(100);

Thread 2

2

A bad interleaving

Interleaved withdraw(100) calls on the same account

– Assume initial balance == 150

•How to fix?

3

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

How to fix?

No way to fix by rewriting the program

– can always find a bad interleaving -> violation

– need some kind of synchronization

•How to fix?

3

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

Race Conditions

A race condition: program executes incorrectly due to

unexpected order of threads

Two kinds

1. data race:

 - two threads write a variable at the same time

 - one thread writes, another reads simultaneously

2. bad interleaving: wrong result due to unexpected

interleaving of statements in two or more threads

•How to fix?

3

Concurrency

Concurrency:

 Correctly and efficiently managing access to shared

resources from multiple possibly-simultaneous clients

Requires coordination
– synchronization to avoid incorrect simultaneous access:

– make others block (wait) until the resource is free

Concurrent applications are often non-deterministic
– how threads are scheduled affects what operations happen first

– non-repeatability complicates testing and debugging

– must work for all possible interleavings!!

4

Concurrency Examples

• Bank Accounts

• Airline/hotel reservations

• Wikipedia

• Facebook

• Databases

5

Locks

• Allow access by at most one thread at a time

– “mutual exclusion”

– make others block (wait) until the resource is free

– called a mutual-exclusion lock or just lock, for short

• Critical sections

– code that requires mutual exclusion

– defined by the programmer (compiler can’t figure this out)

5

Lock ADT

We define Lock as an ADT with operations:
– new: make a new lock, initially “not held”

– acquire: blocks if this lock is already currently “held”

• Once “not held”, makes lock “held” (one thread gets it)

– release: makes this lock “not held”

• If >= 1 threads are blocked on it, exactly 1 will acquire it

Allow access to at most one thread at a time

How can this be implemented?

– acquire (check “not held” -> make “held”) cannot be interrupted

– special hardware and operating system-level support

5

Basic idea (note Lock is not an actual Java class)

10

class BankAccount {

 private int balance = 0;

 private Lock lk = new Lock();

 …

 void withdraw(int amount) {

 lk.acquire(); // may block

 int b = getBalance();

 if(amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount);

 lk.release();

 }

 // deposit would also acquire/release lk

}

Common Mistakes

• Forgetting to release locks

– e.g., because of Throws (previous slide)

• Too few locks

– e.g., all bank accounts share a single lock

• Too many locks

– separate locks for deposit, withdraw

5

What Do We Lock?

• Class
– e.g., all bank accounts?

• Object

– e.g., a particular account?

• Field

– e.g., balance

• Code fragment

– e.g., withdraw

5

Synchronized: Locks in Java

Java has built-in support for locks

1. expression evaluates to an object

• Any object (but not primitive types) can be a lock in Java

2. Acquires the lock, blocking if necessary

• If you get past the {, you have the lock

3. Releases the lock at the matching }

• even if control leaves due to throw, return, etc.

• so impossible to forget to release the lock
13

synchronized (expression) {

 statements

}

BankAccount in Java

14

class BankAccount {

 private int balance = 0;

 private Object lk = new Object();

 int getBalance()

 { synchronized (lk) { return balance; } }

 void setBalance(int x)

 { synchronized (lk) { balance = x; } }

 void withdraw(int amount) {

 synchronized (lk) {

 int b = getBalance();

 if(amount > b)

 throw …

 setBalance(b – amount);

 }

 }

 // deposit would also use synchronized(lk)

}

Usually simplest to use the class object itself as the lock

synchronized (this) {

 statements

}

15

synchronized {

 statements

}

This is so common that Java provides a shorthand:

Shorthand

16

class BankAccount {

 private int balance = 0;

 synchronized int getBalance()

 { return balance; }

 synchronized void setBalance(int x)

 { balance = x; }

 synchronized void withdraw(int amount) {

 int b = getBalance();

 if(amount > b)

 throw …

 setBalance(b – amount);

 }

 // deposit would also use synchronized

}

Final Version

17

Stack Example

class Stack<E> {

 private E[] array = (E[])new Object[SIZE];

 int index = -1;

 boolean isEmpty() {

 return index==-1;

 }

 void push(E val) {

 array[++index] = val;

 }

 E pop() {

 if(isEmpty())

 throw new StackEmptyException();

 return array[index--];

 }

}

Why Wrong?

• IsEmpty and push are one-liners. What can go wrong?

– ans: one line, but multiple operations

– array[++index] = val probably takes at least two ops

– data race if two pushes happen simultaneously

5

19

Stack Example (fixed)

class Stack<E> {

 private E[] array = (E[])new Object[SIZE];

 int index = -1;

 synchronize boolean isEmpty() {

 return index==-1;

 }

 synchronize void push(E val) {

 array[++index] = val;

 }

 synchronize E pop() {

 if(isEmpty())

 throw new StackEmptyException();

 return array[index--];

 }

}

Lock everything? No.

For every memory location (e.g., object field), obey at least

one of the following:

1. Thread-local: only one thread sees it

2. Immutable: read-only

3. Shared-and-mutable: control access via a lock

all memory thread-local

memory
immutable

memory

need

synchronization

20

Thread local

Whenever possible, do not share resources

– easier to give each thread its own local copy

– only works if threads don’t need to communicate via resource

In typical concurrent programs, the vast majority of objects should be

thread local: shared memory should be rare—minimize it

21

Immutable

If location is read-only, no synchronizatin is necessary

Whenever possible, do not update objects

– make new objects instead!

– one of the key tenets of functional programming (CSE 341)

In practice, programmers usually over-use mutation –

minimize it

22

The rest: keep it synchronized

23

• Java provides many other features and details. See, for

example:

– Chapter 14 of CoreJava, Volume 1 by Horstmann/Cornell

– Java Concurrency in Practice by Goetz et al

24

Other Forms of Locking in Java

