2/24/2014

CSE 332: Parallel Sorting

Richard Anderson, Steve Seitz
Winter 2014

Announcements

» Project 3 PartA due Thursday night

Recap

Last week
— simple parallel programs
— common patterns: map, reduce
— analysis tools (work, span, parallelism)
— Amdahl’'s Law

Now
— parallel quicksort, merge sort
— useful building blocks: prefix, pack

Parallelizable?

Fibonacci (N)

Parallelizable?

Prefix-sum:

input |6|3|11|10|8|2|7 8

et | [| [[]]

output[i] = T5 input[i]

First Pass: Sum

2/24/2014

First Pass: Sum

Fum [0,1]: ISum [2,3]: um [4,5]: Fum [5.7]: |

I VvV T VvV T VvV T 1
6 | 3 | 1|08 |[2]7]s

2nd Pass: Use Sum for Prefix-Sum

ISum [4,5]:
[Sum<4:

um [0,1]: um [2,3]:
um<o0: um<2:

um [6,7]:
um<6:

2nd Pass: Use Sum for Prefix-Sum

Fum (.71
Fum=:
tumm Fum[ziﬂ |Fum[4.51 |Fum[57] |
um<o um<z. um<s um=s

63 |11|10(8|2|7(8

Go from root down to leaves
Root
— sum<0 =
Left-child
— sum<K =
Right-child
— sum<K =

Prefix-Sum Analysis

» First Pass (Sum):
— span =
« Second Pass:

— single pass from root down to leaves
« update children’s sum<K value based on parent and sibling
— span =

« Total
— span =

Parallel Prefix, Generalized

Prefix-sum is another common pattern (prefix problems)
— maximum element to the left of i
— is there an element to the left of i i satisfying some property?
— count of elements to the left of i satisfying some property

We can solve all of these problems in the same way

Pack

Pack:

input |s|3|11|10|s|2|7|3| test: X < 8?

et | [[[[[[]]

Output array of elements satisfying test, in original order

2/24/2014

Parallel Pack?

Pack

input |e|3|11|10|3|z|7|8| test: X < 82

cuepue [oafefr] [| [|

*Determining which elements to include is easy
*Determining where each element goes in output is hard
— seems to depend on previous results

13

Parallel Pack

1. map test input, output [0,1] bit vector

input |6|3|11|10|8|2|7|8| test: X < 8?

vst [1]sfofofofs]s]o]

Parallel Pack

1. map test input, output [0,1] bit vector

input |6|3|11|10|8|2|7|8| test: X < 8?

vest [1]afofofofs]s]o]

2. transform bit vector into array of indices into result array

voo 2]z [| [ofe] |

15

Parallel Pack

1. map test input, output [0,1] bit vector

input |6|3|11|10|8|2|7|8| test: X < 8?

vst [1]s]ofofofs]s]o]

2. prefix-sum on bit vector
poe [afofc]efc]a]e]¢]

3. map input to corresponding positions in output

cveput [ofafer] | []|

- if (test[i] == 1) output[pos[i]] = input[i]

Parallel Pack Analysis

* Parallel Pack

1. map: O() span
2. sum-prefix: O() span
3. map: O() span

« Total: O() span

17

Sequential Quicksort

Quicksort (review):
1. Pick a pivot 0o(1)
2. Partition into two sub-arrays o(n)
A. values less than pivot
B. values greater than pivot
3. Recursively sort A and B 2T(n/2), avg
Complexity (avg case)
— T(n) =n+2T(n/2)
— O(n logn)

TO)=T1)=1

How to parallelize?

Parallel Quicksort

Quicksort
1. Pick a pivot 0o(1)
2. Partition into two sub-arrays O(n)

A. values less than pivot
B. values greater than pivot
3. Recursively sort A and B in parallel T(n/2), avg

Complexity (avg case)

- T(n)=n+T(n/2) TO=TM)=1
— Span: O()
— Parallelism (work/span) = O()

19

Taking it to the next level...

* O(1log n) speed-up with infinite processors is okay, but
a bit underwhelming
— Sort 10° elements 30x faster

« Bottleneck:

Parallel Partition

Partition into sub-arrays
A. values less than pivot
B. values greater than pivot

What parallel operation can we use for this?

21

Parallel Partition

* Pick pivot

[e[2]a]o[0]3]s]2]7]6]

« Pack (test: <6)
(1]afofs]s[2[[[[]

* Right pack (test: >=6)

[1[4]o3]s[2]e]8[o]7]

Parallel Quicksort

Quicksort
1. Pick a pivot 0(1)
2. Partition into two sub-arrays O()span

A. values less than pivot
B. values greater than pivot
3. Recursively sort A and B in parallel T(n/2), avg

Complexity (avg case)

- T(n)=0()+T(n/2) TO)=T@1)=1
— Span: O()
— Parallelism (work/span) = O()

23

Sequential Mergesort

Mergesort (review):
1. Sort left and right halves 2T(n/2)
2. Merge results O(n)

Complexity (worst case)
~ T(n)=n+2T(n/2) TO)=T@)=1
— O(n logn)

How to parallelize?
— Do left + right in parallel, improves to O(n)
— To do better, we need to...

2/24/2014

Parallel Merge

[o]4]e[s[9] [1]2[3]5]7]

How to merge two sorted lists in parallel?

25

Parallel Merge

[of4]s[8]e] [1][2[3]5]7]
M

1. Choose median M of left half o()
2. Split both arrays into < M, >=M O()
— how?

Parallel Merge

lo[ae[8]e] [1]2[3]5]7]

merge merge
[1]2]3]5]

1. Choose median M of left half

2. Split both arrays into < M, >=M
— how?

3. Do two submerges in parallel

27

[o[4]s]8]e] [1]2]3]5]7]

merge merge

[1]2]3]s]
[1]2]3]5] o 8IS

merge merge merge

[o] [1]2] [4] [s]s] (s][7] (EISl
(o] [1]2] [4] [s]5] 's][7] (SISl

B @ @) B ls1s]

[o[1]2[3]4[sT6]7]

[o[4e[8]e] [1]2[3]5]7]

merge merge

[112[s]s]

When we do each merge in parallel:
+we split the bigger array in half

+use binary search to split the smaller array
+And in base case we copy to the output array

e

merge merge

[oJ[a] [2] [4][s] [§] 8fo
[o[1]2]s 4[5 [e]7]

29

Parallel Mergesort Pseudocode

Merge(arr[], left,, left,, right,, right,, out[], out,, out,)
int leftSize = left, — left,
int rightSize = right, — right,
Il Assert: out, — out, = leftSize + rightSize
JI We will assume leftSize > rightSize without loss of generality

if (leftSize + rightSize < CUTOFF)
sequential merge and copy into out[out1..out2]

int mid = (left, — left,)/2
binarySearch arrrightl..right2] to find j such that
arr[j] < arr[mid] < arr[j+1]

Merge(arr[], left,, mid, right,, j, out[], out,, out,+mid+j)
Merge(arr[], mid+1, left,, j+1, right,, out[], out,+mid+j+1, out,)

30

2/24/2014

Analysis

Parallel Merge (worst case)
— Height of partition call tree with n elements: O()
— Complexity of each thread (ignoring recursive call): O()
— Span: O()

Parallel Mergesort (worst case)
— Span: O()
— Parallelism (work / span): O()

Subtlety: uneven splits
[of468] [1]2]3]s]
— but even in worst case, get a 3/4 to 1/4 split
— still gives O(log n) height

31

Parallel Quicksort vs. Mergesort

Parallelism (work / span)
— quicksort: O(n/log n) avg case
— mergesort: O(n/log?n) worst case

