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CSE 332:  
Analysis of Fork-Join Parallel 

Programs 

Richard Anderson, Steve Seitz 

Winter 2014 

New Story: Shared Memory with Threads  

… 

Heap for all objects  

and static fields, shared 

by all threads 
Threads, each with own unshared  

call stack and “program counter”  

pc=0x… 

…
 

pc=0x… 

…
 

pc=0x… 

…
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Fork-Join Parallelism 

1. Define thread 
– Java:  define subclass of java.lang.Thread, override run 

 

2. Fork:  instantiate a thread and start executing 

– Java:  create thread object, call start() 

 

3. Join:  wait for thread to terminate 

– Java:  call join() method, which returns when thread finishes 

 

Above uses basic thread library build into Java 

Later we’ll introduce a better ForkJoin Java library designed for  

parallel programming 
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Sum with Threads 
For starters:  have 4 threads simultaneously sum ¼ of the array 

 

 

           ans0         ans1        ans2         ans3 

                                                       + 

                                                     ans 

 

– Create 4 thread objects, each given ¼ of the array 

– Call start() on each thread object to run it in parallel 

– Wait for threads to finish using join() 

– Add together their 4 answers for the final result 
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Part 1: define thread class 
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class SumThread extends java.lang.Thread { 
 
  int lo; // fields, passed to constructor 
  int hi; // so threads know what to do. 
  int[] arr; 
 
  int ans = 0; // result  
     
  SumThread(int[] a, int l, int h) {  
    lo=l; hi=h; arr=a; 
  } 
 
 
  public void run() { //override must have this type 
    for(int i=lo; i < hi; i++) 
      ans += arr[i]; 
  } 
} 
 

Because we must override a no-arguments/no-result run,  

we use fields to communicate across threads 

Part 2:  sum routine 
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int sum(int[] arr){// can be a static method 
  int len = arr.length; 
  int ans = 0; 
  SumThread[] ts = new SumThread[4]; 
  for(int i=0; i < 4; i++){// do parallel computations 
    ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4); 
    ts[i].start();  
  } 
  for(int i=0; i < 4; i++) { // combine results 
    ts[i].join(); // wait for helper to finish! 
    ans += ts[i].ans; 
  } 
  return ans; 
} 
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Parameterizing by number of 

threads 
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int sum(int[] arr, int numTs){ 
  int ans = 0; 
  SumThread[] ts = new SumThread[numTs]; 
  for(int i=0; i < numTs; i++){ 
   ts[i] = new SumThread(arr,(i*arr.length)/numTs, 
                             ((i+1)*arr.length)/numTs); 
   ts[i].start(); 
  } 
  for(int i=0; i < numTs; i++) {  
    ts[i].join();  
    ans += ts[i].ans; 
  } 
  return ans; 
} 
 

 

Recall:  Parallel Sum 

• Sum up N numbers in an array 

 

 

 

 

 

 

• Let’s implement this with threads... 
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Code looks something like this (using Java Threads) 

The key is to do the result-combining in parallel 

as well 

– And using recursive divide-and-conquer makes 

this natural 

– Easier to write and more efficient asymptotically! 
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class SumThread extends java.lang.Thread { 
  int lo; int hi; int[] arr; // fields to know what to do 
  int ans = 0; // result 
  SumThread(int[] a, int l, int h) { … } 
  public void run(){ // override 
    if(hi – lo < SEQUENTIAL_CUTOFF) 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
    else { 
      SumThread left = new SumThread(arr,lo,(hi+lo)/2); 
      SumThread right= new SumThread(arr,(hi+lo)/2,hi); 
      left.start(); 
      right.start(); 
      left.join(); // don’t move this up a line – why? 
      right.join(); 
      ans = left.ans + right.ans; 
    } 
  } 
} 
int sum(int[] arr){ // just make one thread! 
   SumThread t = new SumThread(arr,0,arr.length); 
   t.run(); 
   return t.ans; 
} 

Thread: sum range [0,10) 

 Thread: sum range [0,5) 

  Thread: sum range [0,2)  

   Thread: sum range [0,1) (return arr[0]) 

   Thread: sum range [1,2) (return arr[1]) 

   add results from two helper threads 

  Thread: sum range [2,5) 

   Thread: sum range [2,3) (return arr[2]) 

   Thread: sum range [3,5) 

    Thread: sum range [3,4) (return arr[3]) 

    Thread: sum range [4,5) (return arr[4]) 

    add results from two helper threads  

   add results from two helper threads 

  add results from two helper threads 

 Thread: sum range [5,10) 

  Thread: sum range [5,7) 

   Thread: sum range [5,6) (return arr[5]) 

   Thread: sum range [6,7) (return arr[6]) 

   add results from two helper threads 

  Thread: sum range [7,10) 

   Thread: sum range [7,8) (return arr[7]) 

   Thread: sum range [8,10) 

    Thread: sum range [8,9) (return arr[8]) 

    Thread: sum range [9,10) (return arr[9]) 

    add results from two helper threads 

   add results from two helper threads 

 add results from two helper threads 

Example: summing  

an array with 10 elements.  

 (too small to actually want to  

use parallelism) 

 

The algorithm produces the  

following tree of recursion,  

where the range  [i,j)  

includes i and excludes j: 
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Recursive problem decomposition 

Divide-and-conquer 
Same approach useful for many problems beyond sum 

– If you have enough processors, total time O(log n) 

– Next lecture: study reality of P << n processors 

 

• Will write all our parallel algorithms in this style 

– But using a special fork-join library engineered for this style 

• Takes care of scheduling the computation well 

– Often relies on operations being associative (like +) 
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Thread Overhead 

Creating and managing threads incurs cost   

Two optimizations: 
1. Use a sequential cutoff, typically around 500-1000 

• Eliminates lots of tiny threads 

 

2. Do not create two recursive threads; create one thread and 

do the other piece of work “yourself” 

• Cuts the number of threads created by another 2x 

12 
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Half the threads! 

// wasteful: don’t 
SumThread left  = … 
SumThread right = … 
 
left.start(); 
right.start(); 
 
 
 
left.join();  
right.join(); 
ans=left.ans+right.ans; 

// better: do!! 
SumThread left  = … 
SumThread right = … 
 
left.start(); 
right.run(); 
 

 

 
left.join(); 
// no right.join needed 
ans=left.ans+right.ans; 

order of last 4 lines 
Is critical – why? 

Note: run is a 

normal function call! 

execution won’t  

continue until we  

are done with run 
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Better Java Thread Library 

• Even with all this care, Java’s threads are too “heavyweight” 

– Constant factors, especially space overhead 

– Creating 20,000 Java threads just a bad idea  

 

• The ForkJoin Framework is designed to meet the needs of divide-

and-conquer fork-join parallelism 

– In the Java 7 standard libraries 

• (Also available for Java 6 as a downloaded .jar file) 

– Section will focus on pragmatics/logistics 

– Similar libraries available for other languages  

• C/C++: Cilk (inventors), Intel’s Thread Building Blocks 

• C#: Task Parallel Library 

• … 
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Different terms, same basic idea 

To use the ForkJoin Framework: 

• A little standard set-up code (e.g., create a ForkJoinPool) 

 

Don’t subclass Thread         Do subclass RecursiveTask<V> 

Don’t override run        Do override compute 

Do not use an ans field        Do return a V from compute 

Don’t call start        Do call fork 

Don’t just call join    Do call join (which returns answer) 

Don’t call run to hand-optimize    Do call compute to hand-optimize 

Don’t have a topmost call to run Do create a pool and call invoke 

 

See the web page for (linked in to project 3 description): 

 “A Beginner’s Introduction to the ForkJoin Framework” 
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Fork Join Framework Version: 
(missing imports) 
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class SumArray extends RecursiveTask<Integer> { 
  int lo; int hi; int[] arr; // fields to know what to do 
  SumArray(int[] a, int l, int h) { … } 
  protected Integer compute(){// return answer 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 
      int ans = 0; // local var, not a field 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
      return ans; 
    } else { 
      SumArray left = new SumArray(arr,lo,(hi+lo)/2); 
      SumArray right= new SumArray(arr,(hi+lo)/2,hi); 
      left.fork(); // fork a thread and calls compute 
      int rightAns = right.compute();//call compute directly 
      int leftAns  = left.join(); // get result from left 
      return leftAns + rightAns; 
    } 
  } 
} 
static final ForkJoinPool fjPool = new ForkJoinPool(); 
int sum(int[] arr){ 
  return fjPool.invoke(new SumArray(arr,0,arr.length)); 
 // invoke returns the value compute returns 
} 

Parallel Sum 

• Sum up N numbers in an array 
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Parallel Max? 
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Reductions 

• Same trick works for many tasks, e.g., 
– is there an element satisfying some property (e.g., prime) 

– left-most element satisfying some property (e.g., first prime) 

– smallest rectangle encompassing a set of points (proj3) 

– counts:  number of strings that start with a vowel 

– are these elements in sorted order? 

• Called a reduction, or reduce operation 

– reduce a collection of data items to a single item 

• result can be more than a single value, e.g., produce 

histogram from a set of test scores 

• Very common parallel programming pattern 
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Parallel Vector Scaling 
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• Multiply every element in the array by 2 

Maps 

• A map operates on each element of a collection of 

data to produce a new collection of the same size  

– each element is processed independently of the others, e.g. 

• vector scaling 

• vector addition 

• test property of each element (is it prime) 

• uppercase to lowercase 

• ... 

 

• Another common parallel programming pattern 
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Maps in ForkJoin Framework 

• Even though there is no result-combining, it still 

helps with load balancing to create many small 

tasks 

– Maybe not for vector-add but for more compute-

intensive maps 

– The forking is O(log n) whereas theoretically other 

approaches to vector-add is O(1) 
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class VecAdd extends RecursiveAction { 
  int lo; int hi; int[] res; int[] arr1; int[] arr2;    
  VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … } 
  protected void compute(){ 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 
 for(int i=lo; i < hi; i++) 
        res[i] = arr1[i] + arr2[i]; 
    } else { 
      int mid = (hi+lo)/2; 
      VecAdd left = new VecAdd(lo,mid,res,arr1,arr2); 
      VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);    
      left.fork(); 
      right.compute(); 
      left.join(); 
    } 
  } 
} 
static final ForkJoinPool fjPool = new ForkJoinPool(); 
int[] add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  int[] ans = new int[arr1.length]; 
  fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2); 
  return ans; 
} 

Maps and Reductions 

Maps and reductions:  the “workhorses” of parallel 

programming 

– By far the most important and common patterns 

 

– Learn to recognize when an algorithm can be written in terms 

of maps and reductions 

 

– makes parallel programming easy (plug and play) 
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Distributed Map Reduce 

• You may have heard of Google’s map/reduce 

– or open-source version called Hadoop 

– powers much of Google’s infrastructure 

 

• Idea:  maps/reductions using many machines 

– same principles, applied to distributed computing 

– system takes care of distributing data, fault-tolerance 

– you just write code to handle one element, reduce a 

collection 

 

• Co-developed by Jeff Dean (UW alum!) 

24 
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Maps and Reductions on Trees 

• Max value in a min-heap 

 

 

 

 

 

 

• How to parallelize? 

• Is this a map or a reduce? 

• Complexity? 
25 
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Analyzing Parallel Programs 

Let TP be the running time on P processors 

 

Two key measures of run-time: 

• Work: How long it would take 1 processor = T1 

• Span: How long it would take infinity processors = T 

– The hypothetical ideal for parallelization 

– This is the longest “dependence chain” in the computation 

– Example: O(log n) for summing an array  

– Also called “critical path length” or “computational depth” 
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The DAG 

• Fork-join programs can be modeled with a DAG 
– nodes:  pieces of work 

– edges:  order dependencies 

 

 

 

 

 

 

 

 

 

 

What’s T1 (work): 

 

What’s T (span): 27 

A fork creates two children 

• new thread 

• continuation of current thread 
 

A join makes a node with two 

incoming edges 

• terminated thread 

• continuation of current thread 

Divide and Conquer Algorithms 

Our fork and join frequently look like this: 

 

 

 

 

 

 

 

 

base cases 

divide  

combine 

results  

In this context, the span (T) is: 
•The longest dependence-chain; longest ‘branch’ in parallel ‘tree’ 

•Example: O(log n) for summing an array; we halve the data down to our cut-

off, then add back together; O(log n) steps, O(1) time for each 

•Also called “critical path length” or “computational depth” 

28 

Parallel Speed-up 

• Speed-up on P processors: T1 / TP   

 

• If speed-up is P, we call it perfect linear speed-up 

– e.g., doubling P halves running time 

– hard to achieve in practice 

 

• Parallelism is the maximum possible speed-up: T1 / T   

– if you had infinite processors 
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