
2/20/2014

1

1

CSE 332:
Analysis of Fork-Join Parallel

Programs

Richard Anderson, Steve Seitz

Winter 2014

New Story: Shared Memory with Threads

…

Heap for all objects

and static fields, shared

by all threads
Threads, each with own unshared

call stack and “program counter”

pc=0x…

…

pc=0x…

…

pc=0x…

…

2

Fork-Join Parallelism

1. Define thread
– Java: define subclass of java.lang.Thread, override run

2. Fork: instantiate a thread and start executing

– Java: create thread object, call start()

3. Join: wait for thread to terminate

– Java: call join() method, which returns when thread finishes

Above uses basic thread library build into Java

Later we’ll introduce a better ForkJoin Java library designed for

parallel programming

3

Sum with Threads
For starters: have 4 threads simultaneously sum ¼ of the array

 ans0 ans1 ans2 ans3

 +

 ans

– Create 4 thread objects, each given ¼ of the array

– Call start() on each thread object to run it in parallel

– Wait for threads to finish using join()

– Add together their 4 answers for the final result

4

Part 1: define thread class

5

class SumThread extends java.lang.Thread {

 int lo; // fields, passed to constructor
 int hi; // so threads know what to do.
 int[] arr;

 int ans = 0; // result

 SumThread(int[] a, int l, int h) {
 lo=l; hi=h; arr=a;
 }

 public void run() { //override must have this type
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 }
}

Because we must override a no-arguments/no-result run,

we use fields to communicate across threads

Part 2: sum routine

6

int sum(int[] arr){// can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start();
 }
 for(int i=0; i < 4; i++) { // combine results
 ts[i].join(); // wait for helper to finish!
 ans += ts[i].ans;
 }
 return ans;
}

2/20/2014

2

Parameterizing by number of

threads

7

int sum(int[] arr, int numTs){
 int ans = 0;
 SumThread[] ts = new SumThread[numTs];
 for(int i=0; i < numTs; i++){
 ts[i] = new SumThread(arr,(i*arr.length)/numTs,
 ((i+1)*arr.length)/numTs);
 ts[i].start();
 }
 for(int i=0; i < numTs; i++) {
 ts[i].join();
 ans += ts[i].ans;
 }
 return ans;
}

Recall: Parallel Sum

• Sum up N numbers in an array

• Let’s implement this with threads...

8

+ + + + + + + +

+ + + +

+ +

+

+ + + + + + + + + + + + + + + +

Code looks something like this (using Java Threads)

The key is to do the result-combining in parallel

as well

– And using recursive divide-and-conquer makes

this natural

– Easier to write and more efficient asymptotically!

9

class SumThread extends java.lang.Thread {
 int lo; int hi; int[] arr; // fields to know what to do
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ // override
 if(hi – lo < SEQUENTIAL_CUTOFF)
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 else {
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);
 left.start();
 right.start();
 left.join(); // don’t move this up a line – why?
 right.join();
 ans = left.ans + right.ans;
 }
 }
}
int sum(int[] arr){ // just make one thread!
 SumThread t = new SumThread(arr,0,arr.length);
 t.run();
 return t.ans;
}

Thread: sum range [0,10)

 Thread: sum range [0,5)

 Thread: sum range [0,2)

 Thread: sum range [0,1) (return arr[0])

 Thread: sum range [1,2) (return arr[1])

 add results from two helper threads

 Thread: sum range [2,5)

 Thread: sum range [2,3) (return arr[2])

 Thread: sum range [3,5)

 Thread: sum range [3,4) (return arr[3])

 Thread: sum range [4,5) (return arr[4])

 add results from two helper threads

 add results from two helper threads

 add results from two helper threads

 Thread: sum range [5,10)

 Thread: sum range [5,7)

 Thread: sum range [5,6) (return arr[5])

 Thread: sum range [6,7) (return arr[6])

 add results from two helper threads

 Thread: sum range [7,10)

 Thread: sum range [7,8) (return arr[7])

 Thread: sum range [8,10)

 Thread: sum range [8,9) (return arr[8])

 Thread: sum range [9,10) (return arr[9])

 add results from two helper threads

 add results from two helper threads

 add results from two helper threads

Example: summing

an array with 10 elements.

 (too small to actually want to

use parallelism)

The algorithm produces the

following tree of recursion,

where the range [i,j)

includes i and excludes j:

10

Recursive problem decomposition

Divide-and-conquer
Same approach useful for many problems beyond sum

– If you have enough processors, total time O(log n)

– Next lecture: study reality of P << n processors

• Will write all our parallel algorithms in this style

– But using a special fork-join library engineered for this style

• Takes care of scheduling the computation well

– Often relies on operations being associative (like +)

11

+ + + + + + + +

+ + + +

+ +

+

Thread Overhead

Creating and managing threads incurs cost

Two optimizations:
1. Use a sequential cutoff, typically around 500-1000

• Eliminates lots of tiny threads

2. Do not create two recursive threads; create one thread and

do the other piece of work “yourself”

• Cuts the number of threads created by another 2x

12

2/20/2014

3

Half the threads!

// wasteful: don’t
SumThread left = …
SumThread right = …

left.start();
right.start();

left.join();
right.join();
ans=left.ans+right.ans;

// better: do!!
SumThread left = …
SumThread right = …

left.start();
right.run();

left.join();
// no right.join needed
ans=left.ans+right.ans;

order of last 4 lines
Is critical – why?

Note: run is a

normal function call!

execution won’t

continue until we

are done with run

13

Better Java Thread Library

• Even with all this care, Java’s threads are too “heavyweight”

– Constant factors, especially space overhead

– Creating 20,000 Java threads just a bad idea 

• The ForkJoin Framework is designed to meet the needs of divide-

and-conquer fork-join parallelism

– In the Java 7 standard libraries

• (Also available for Java 6 as a downloaded .jar file)

– Section will focus on pragmatics/logistics

– Similar libraries available for other languages

• C/C++: Cilk (inventors), Intel’s Thread Building Blocks

• C#: Task Parallel Library

• …

14

Different terms, same basic idea

To use the ForkJoin Framework:

• A little standard set-up code (e.g., create a ForkJoinPool)

Don’t subclass Thread Do subclass RecursiveTask<V>

Don’t override run Do override compute

Do not use an ans field Do return a V from compute

Don’t call start Do call fork

Don’t just call join Do call join (which returns answer)

Don’t call run to hand-optimize Do call compute to hand-optimize

Don’t have a topmost call to run Do create a pool and call invoke

See the web page for (linked in to project 3 description):

 “A Beginner’s Introduction to the ForkJoin Framework”

15

Fork Join Framework Version:
(missing imports)

16

class SumArray extends RecursiveTask<Integer> {
 int lo; int hi; int[] arr; // fields to know what to do
 SumArray(int[] a, int l, int h) { … }
 protected Integer compute(){// return answer
 if(hi – lo < SEQUENTIAL_CUTOFF) {
 int ans = 0; // local var, not a field
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 return ans;
 } else {
 SumArray left = new SumArray(arr,lo,(hi+lo)/2);
 SumArray right= new SumArray(arr,(hi+lo)/2,hi);
 left.fork(); // fork a thread and calls compute
 int rightAns = right.compute();//call compute directly
 int leftAns = left.join(); // get result from left
 return leftAns + rightAns;
 }
 }
}
static final ForkJoinPool fjPool = new ForkJoinPool();
int sum(int[] arr){
 return fjPool.invoke(new SumArray(arr,0,arr.length));
 // invoke returns the value compute returns
}

Parallel Sum

• Sum up N numbers in an array

17

+ + + + + + + +

+ + + +

+ +

+

+ + + + + + + + + + + + + + + +

Parallel Max?

18

+ + + + + + + +

+ + + +

+ +

+

+ + + + + + + + + + + + + + + +

2/20/2014

4

Reductions

• Same trick works for many tasks, e.g.,
– is there an element satisfying some property (e.g., prime)

– left-most element satisfying some property (e.g., first prime)

– smallest rectangle encompassing a set of points (proj3)

– counts: number of strings that start with a vowel

– are these elements in sorted order?

• Called a reduction, or reduce operation

– reduce a collection of data items to a single item

• result can be more than a single value, e.g., produce

histogram from a set of test scores

• Very common parallel programming pattern

19

Parallel Vector Scaling

20

• Multiply every element in the array by 2

Maps

• A map operates on each element of a collection of

data to produce a new collection of the same size

– each element is processed independently of the others, e.g.

• vector scaling

• vector addition

• test property of each element (is it prime)

• uppercase to lowercase

• ...

• Another common parallel programming pattern

21

Maps in ForkJoin Framework

• Even though there is no result-combining, it still

helps with load balancing to create many small

tasks

– Maybe not for vector-add but for more compute-

intensive maps

– The forking is O(log n) whereas theoretically other

approaches to vector-add is O(1)

22

class VecAdd extends RecursiveAction {
 int lo; int hi; int[] res; int[] arr1; int[] arr2;
 VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … }
 protected void compute(){
 if(hi – lo < SEQUENTIAL_CUTOFF) {
 for(int i=lo; i < hi; i++)
 res[i] = arr1[i] + arr2[i];
 } else {
 int mid = (hi+lo)/2;
 VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
 VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
 left.fork();
 right.compute();
 left.join();
 }
 }
}
static final ForkJoinPool fjPool = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2){
 assert (arr1.length == arr2.length);
 int[] ans = new int[arr1.length];
 fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2);
 return ans;
}

Maps and Reductions

Maps and reductions: the “workhorses” of parallel

programming

– By far the most important and common patterns

– Learn to recognize when an algorithm can be written in terms

of maps and reductions

– makes parallel programming easy (plug and play)

23

Distributed Map Reduce

• You may have heard of Google’s map/reduce

– or open-source version called Hadoop

– powers much of Google’s infrastructure

• Idea: maps/reductions using many machines

– same principles, applied to distributed computing

– system takes care of distributing data, fault-tolerance

– you just write code to handle one element, reduce a

collection

• Co-developed by Jeff Dean (UW alum!)

24

2/20/2014

5

Maps and Reductions on Trees

• Max value in a min-heap

• How to parallelize?

• Is this a map or a reduce?

• Complexity?
25

99 60 40

15 20

10

50 700

85

65

Analyzing Parallel Programs

Let TP be the running time on P processors

Two key measures of run-time:

• Work: How long it would take 1 processor = T1

• Span: How long it would take infinity processors = T

– The hypothetical ideal for parallelization

– This is the longest “dependence chain” in the computation

– Example: O(log n) for summing an array

– Also called “critical path length” or “computational depth”

26

The DAG

• Fork-join programs can be modeled with a DAG
– nodes: pieces of work

– edges: order dependencies

What’s T1 (work):

What’s T (span): 27

A fork creates two children

• new thread

• continuation of current thread

A join makes a node with two

incoming edges

• terminated thread

• continuation of current thread

Divide and Conquer Algorithms

Our fork and join frequently look like this:

base cases

divide

combine

results

In this context, the span (T) is:
•The longest dependence-chain; longest ‘branch’ in parallel ‘tree’

•Example: O(log n) for summing an array; we halve the data down to our cut-

off, then add back together; O(log n) steps, O(1) time for each

•Also called “critical path length” or “computational depth”

28

Parallel Speed-up

• Speed-up on P processors: T1 / TP

• If speed-up is P, we call it perfect linear speed-up

– e.g., doubling P halves running time

– hard to achieve in practice

• Parallelism is the maximum possible speed-up: T1 / T 

– if you had infinite processors

29

