CSE 332: Hash Tables

Richard Anderson, Steve Seitz Winter 2014

Announcements (1/29/14)

- HW #3 due now
- HW #4 out today
- Project 2A due Thursday night.
- Reading for this lecture: Chapter 5.

AVL find, insert, delete: O(log n)

Suppose (unique) keys between 0 and 1000.

– Can we do better than O(log n)?

Arrays for Dictionaries

Now suppose keys are first, last names

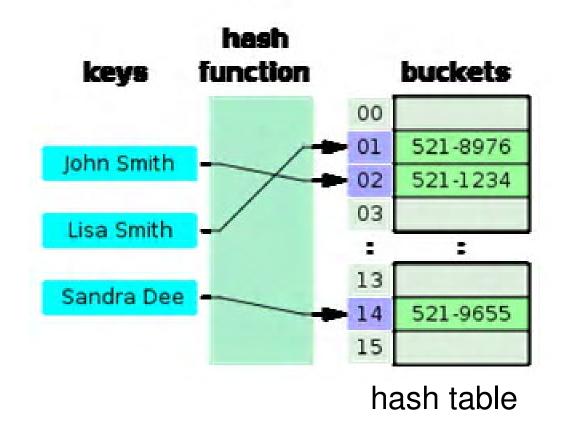
– how big is the key space?

But keyspace is sparsely populated

- <10⁵ active students

Hash Tables

- Map keys to a smaller array called a hash table
 - via a hash function h(K)
 - Find, insert, delete: O(1) on average!



Simple Integer Hash Functions

- key space K = integers
- TableSize = 10

- h(K) =
- Insert: 7, 18, 41, 34

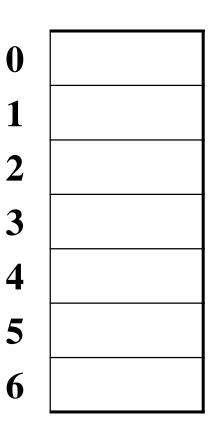


Simple Integer Hash Functions

- key space K = integers
- TableSize = 7

• h(K) = K % 7

• Insert: 7, 18, 41, 34



Aside: Properties of Mod

To keep hashed values within the size of the table, we will generally do:

$$h(K) = function(K) \% TableSize$$

(In the previous examples, function(K) = K.)

Useful properties of mod:

$$- (a + b) \% c = [(a \% c) + (b \% c)] \% c$$

$$- (a b) \% c = [(a \% c) (b \% c)] \% c$$

$$- a \% c = b \% c \rightarrow (a - b) \% c = 0$$

String Hash Functions?

What's a good hash function for a string?

Some String Hash Functions

key space = strings

$$K = S_0 S_1 S_2 ... S_{m-1}$$
 (where S_i are chars: $S_i \in [0, 128]$)

- 1. $h(K) = s_0 \%$ TableSize
- 2. $h(K) = \left(\sum_{i=0}^{m-1} s_i\right)$ % TableSize
- 3. $h(K) = \left(\sum_{i=0}^{m-1} s_i \cdot 128^i\right)$ % TableSize

Hash Function Desiderata

What are good properties for a hash function?

Designing Hash Functions

Often based on **modular hashing**:

$$h(K) = f(K) \% P$$

P is typically the TableSize

P is often chosen to be prime:

- Reduces likelihood of collisions due to patterns in data
- Is useful for guarantees on certain hashing strategies (as we'll see)

But what would be a more convenient value of P?

A Fancier Hash Function

Some experimental results indicate that modular hash functions with prime tables sizes are not ideal.

Lots of better solutions, e.g.,

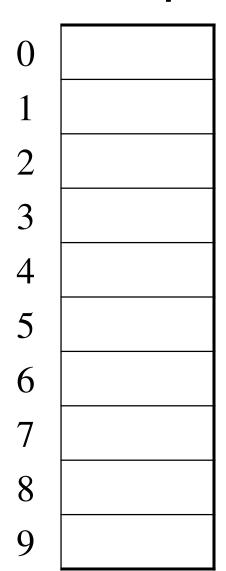
```
jenkinsOneAtATimeHash(String key, int keyLength) {
    hash = 0;
    for (i = 0; i < key_len; i++) {
        hash += key[i];
        hash += (hash << 10);
        hash ^= (hash >> 6);
    }
    hash += (hash << 3);
    hash ^= (hash >> 11);
    hash += (hash << 15);
    return hash % TableSize;
}</pre>
```

Collision Resolution

Collision: when two keys map to the same location in the hash table.

How handle this?

Separate Chaining



msert.
10
22
107
12
42

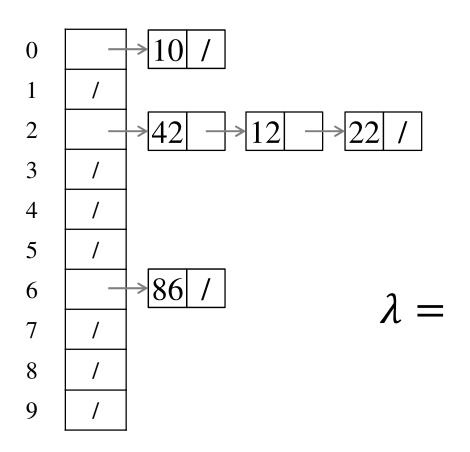
Incont.

All keys that map to the same hash value are kept in a list (or "bucket").

Analysis of Separate Chaining

The load factor, λ , of a hash table is λ = average # of elems per bucket

$$\lambda = \frac{N}{\text{TableSize}}$$



Analysis of Separate Chaining

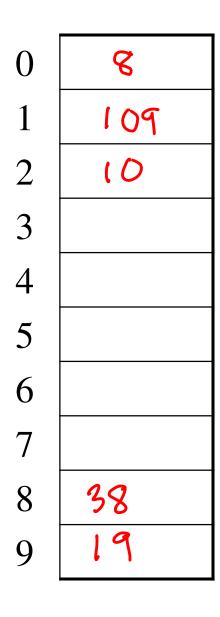
The load factor, λ , of a hash table is λ = average # of elems per bucket

$$\lambda = \frac{N}{\text{TableSize}}$$

Average cost of:

- Unsuccessful find?
- Successful find?
- Insert?

Alternative: Use Empty Space in the Table



Insert:

Try h(K).

If full, try h(K)+1.

If full, try h(K)+2.

If full, try h(K)+3.

Etc...

Open Addressing

The approach on the previous slide is an example of **open addressing**:

After a collision, try "next" spot. If there's another collision, try another, etc.

Finding the next available spot is called **probing**:

```
0^{th} probe = h(k) % TableSize

1^{th} probe = (h(k) + f(1)) % TableSize

2^{th} probe = (h(k) + f(2)) % TableSize

...

i^{th} probe = (h(k) + f(i)) % TableSize
```

f(i) is the probing function. We'll look at a few...

Linear Probing

$$f(i) = i$$

Probe sequence:

```
0^{th} probe = h(K) % TableSize

1^{th} probe = (h(K) + 1) % TableSize

2^{th} probe = (h(K) + 2) % TableSize

....

i^{th} probe = (h(K) + i) % TableSize
```

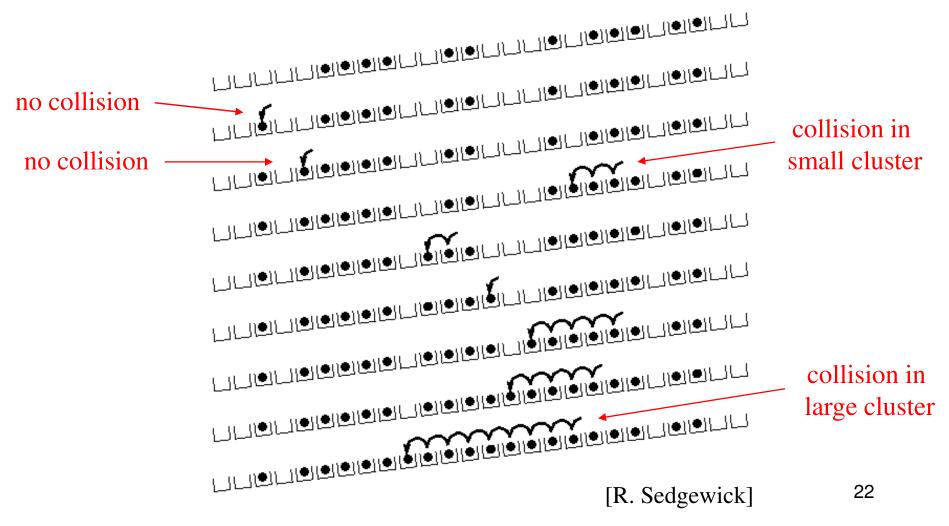
Linear Probing

0	8
1	109
2	10
3	
4 5	
5	
6	
7	
8	38
9	19

	38
	19
	8
	109
Try h(K)	10
If full, try $h(K)+1$.	
If full, try $h(K)+2$.	
If full, try $h(K)+3$.	
Etc	

Insert:

Linear Probing – Clustering



Analysis of Linear Probing

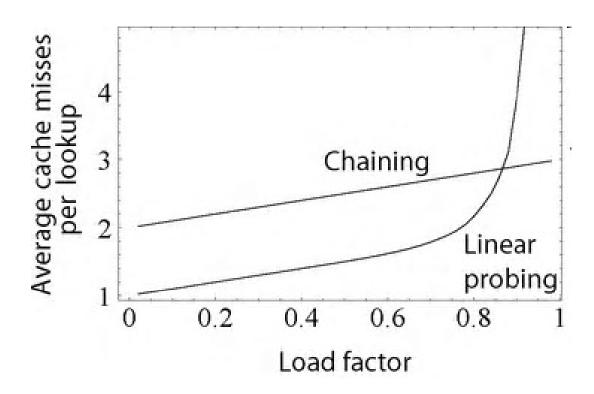
- For any λ < 1, linear probing will find an empty slot
- Expected # of probes (for large table sizes)
 - unsuccessful search:

$$\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)^2} \right)$$
 if $\lambda = 0.5 \Rightarrow 2.5$ $\lambda = 0.9 \Rightarrow 50.5$

- successful search:

$$\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)} \right)$$

- Linear probing suffers from primary clustering
- Performance quickly degrades for $\lambda > 1/2$



Quadratic Probing

$$f(i) = i^2$$

Less likely to encounter
Primary
Clustering

Probe sequence:

```
0^{th} probe = h(K) % TableSize

1^{th} probe = (h(K) + 1) % TableSize

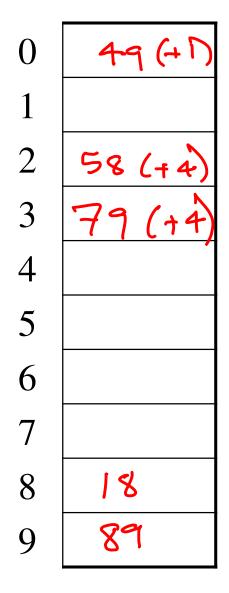
2^{th} probe = (h(K) + 4) % TableSize

3^{th} probe = (h(K) + 9) % TableSize

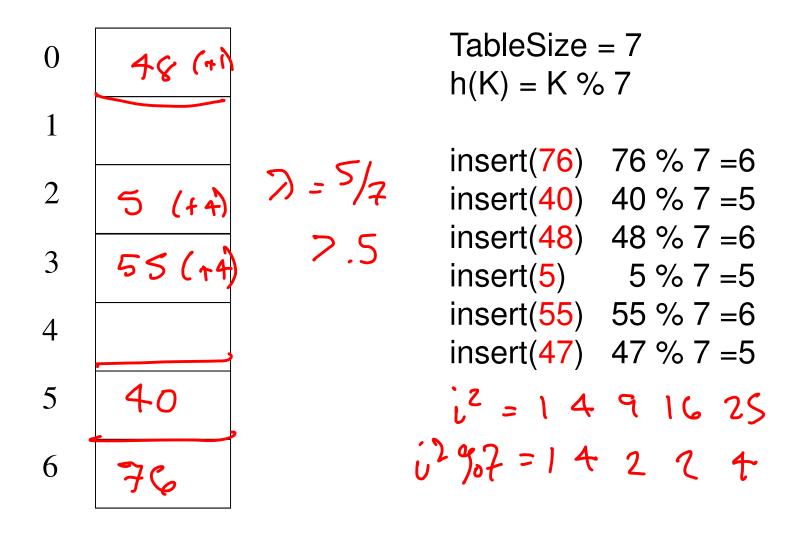
....

i^{th} probe = (h(K) + i^2) % TableSize
```

Quadratic Probing Example



Another Quadratic Probing Example



Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

Assertion #1: If T = TableSize is **prime** and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in \leq T/2 probes

```
Assertion #2: For prime T and all 0 \le i, j \le T/2 and i \ne j,
(h(K) + i^2) % T \ne (h(K) + j^2) % T
```

Assertion #3: Assertion #2 proves assertion #1.

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

We can prove assertion #2 by contradiction.

Suppose that for some $i \neq j$, $0 \leq i, j \leq \pi/2$, prime T:

$$(h(K) + i^{2}) % T = (h(K) + j^{2}) % T = 0$$

$$(h(K) + i^{2}) % T = 0$$

$$(i^{2} - j^{2}) ? v = 0$$

$$(i^{2} - j^{2}) (i^{2} + j^{2}) ? v = 0$$

$$(i^{2} - j^{2}) (i^{2} + j^{2}) ? v = 0$$

$$(i^{2} - j^{2}) (i^{2} + j^{2}) ? v = 0$$

$$(i^{2} - j^{2}) (i^{2} + j^{2}) ? v = 0$$

Quadratic Probing: Properties

- For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger λ , quadratic probing may find a slot.
- Quadratic probing does not suffer from primary clustering: keys hashing to the same area is ok
- But what about keys that hash to the same slot?
 - Secondary Clustering!

Double Hashing

Idea: given two different (good) hash functions h(K) and g(K), it is unlikely for two keys to collide with both of them.

So...let's try probing with a second hash function:

$$f(i) = i * g(K)$$

• Probe sequence:

```
0^{th} probe = h(K) % TableSize

1^{th} probe = (h(K) + g(K)) % TableSize

2^{th} probe = (h(K) + 2*g(K)) % TableSize

3^{th} probe = (h(K) + 3*g(K)) % TableSize

i^{th} probe = (h(K) + i*g(K)) % TableSize
```

Double Hashing Example

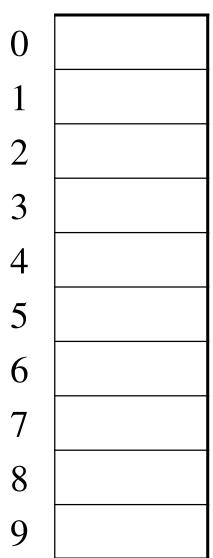
TableSize = 7

$$h(K) = K \% 7$$

 $g(K) = 5 - (K \% 5)$

Insert(76)
$$76\%7 = 6$$
 and $5 - 76\%5 =$
Insert(93) $93\%7 = 2$ and $5 - 93\%5 =$
Insert(40) $40\%7 = 5$ and $5 - 40\%5 =$
Insert(47) $47\%7 = 5$ and $5 - 47\%5 = 3$
Insert(10) $10\%7 = 3$ and $5 - 10\%5 =$
Insert(55) $55\%7 = 6$ and $5 - 55\%5 = 5$

Another Example of Double Hashing



Hash Functions:

$$T = TableSize = 10$$

 $h(K) = K \% T$
 $g(K) = 1 + (K/T) \% (T-1)$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

Analysis of Double Hashing

- Double hashing is safe for λ < 1 for this case:
 - h(k) = k % p
 - -g(k) = q (k % q)
 - -2 < q < p, and p, q are primes
- Expected # of probes (for large table sizes)
 - unsuccessful search:

$$\frac{1}{1-\lambda}$$

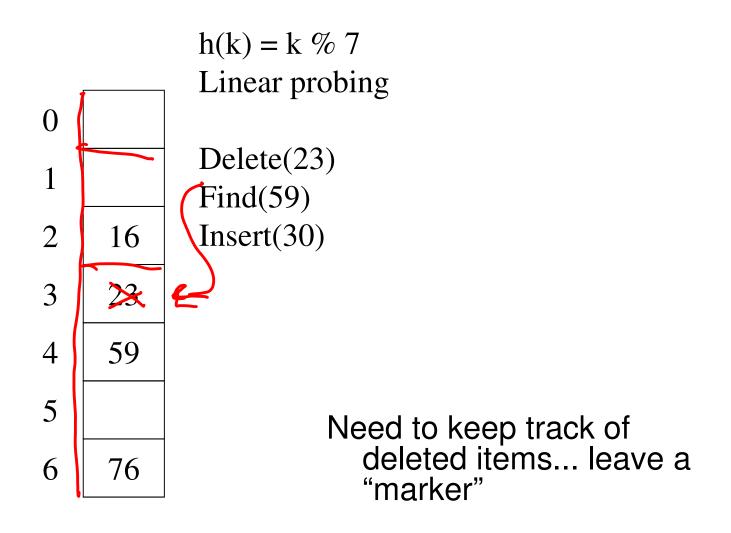
- successful search:

$$\frac{1}{\lambda} \log_e \left(\frac{1}{1 - \lambda} \right)$$

Deletion in Separate Chaining

How do we delete an element with separate chaining?

Deletion in Open Addressing



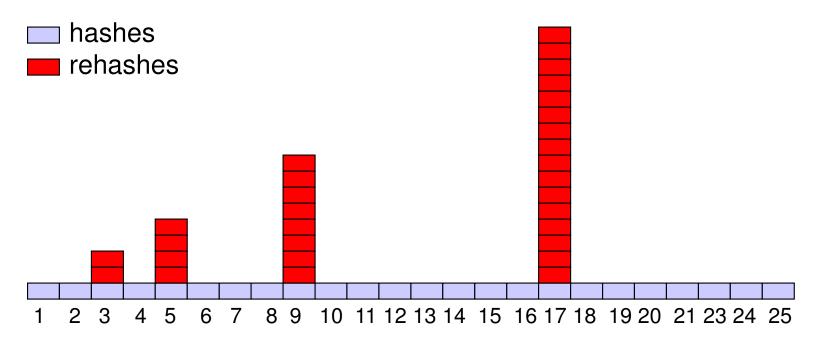
Rehashing

When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - Separate chaining: full ($\lambda = 1$)
 - Open addressing: half full ($\lambda = 0.5$)
 - When an insertion fails
 - Some other threshold
- Cost of a single rehashing?

Rehashing Picture

 Starting with table of size 2, double when load factor > 1.



Amortized Analysis of Rehashing

- Cost of inserting n keys is < 3n
- suppose $2^{k} + 1 \le n \le 2^{k+1}$
 - Hashes = n
 - Rehashes = $2 + 2^2 + ... + 2^k = 2^{k+1} 2$
 - $Total = n + 2^{k+1} 2 < 3n$
- Example

$$- n = 33$$
, Total = $33 + 64 - 2 = 95 < 99$

Equal objects must hash the same

 The Java library (and your project hash table) make a very important assumption that clients must satisfy...

```
If c.compare(a,b) == 0, then we require
h.hash(a) == h.hash(b)
```

- If you ever override equals
 - You need to override hashCode also in a consistent way
 - See CoreJava book, Chapter 5 for other "gotchas" with equals

10/18/2013 40

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
 - But what is the cost of doing, e.g., findMin?
- Can use:
 - Separate chaining (easiest)
 - Open hashing (memory conservation, no linked list management)
 - Java uses separate chaining
- Rehashing has good amortized complexity.
- Also has a big data version to minimize disk accesses: extendible hashing. (See book.)

Terminology Alert!

- We (and the book) use the terms
 - "chaining" or "separate chaining"
 - "open addressing"
- Very confusingly
 - "open hashing" is a synonym for "chaining"
 - "closed hashing" is a synonym for "open addressing"