
1 

1 

CSE 332: Data Structures 

 

Priority Queues – Binary Heaps 

Richard Anderson, Steve Seitz

  

Winter 2014 

 
2 

Administrative 

• P1A due tonight (Monday) by 11:59pm 

– via catalyst 

• HW1 due beginning of class Wednesday 

• Reading for this week: Chapter 6.1-6.5 

3 

Recall Queues 

• FIFO:  First-In, First-Out 

– Print jobs 

– File serving 

– Phone calls and operators 

– Lines at the Department of Licensing… 

4 

Priority Queues 

Prioritize who goes first – a priority queue: 

– treat ER patients in order of severity 

– route network packets in order of urgency 

– operating system can favor jobs of shorter 

duration or those tagged as having higher 

importance 

– Greedy optimization: “best first” problem solving 

5 

Priority Queue ADT 

• Need a new ADT 

• Operations:   Insert an Item,  

   Remove the “Best” Item 

 

 

 

 

 

insert deleteMin 

 6        2 

  15              23 

          12     18 

    45       3         

7 

6 1/13/2014 6 

Priority Queue ADT 

1. PQueue data : collection of data with priority 
 

2. PQueue operations 

– insert 

– deleteMin 

(also: create, destroy, is_empty) 
 

3. PQueue property:  if x has lower priority 

than y, x will be deleted before y 



2 

7 7 

Potential implementations 

insert deleteMin 

Unsorted list (Array) 

Unsorted list (Linked-List) 

Sorted list (Array) 

Sorted list (Linked-List) 

Binary Search Tree (BST) 

8 

Binary Heap data structure 

• binary heap (a kind of binary tree) for priority 

queues: 

– O(log n) worst case for both insert and deleteMin 

– O(1) average insert 

 

• It’s optimized for priority queues.  Lousy for other 

types of operations (e.g., searching, sorting) 

9 

Tree Review 
A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

root(T): A 

leaves(T): D-F, I-N 

children(B): D-F 

parent(H):  G 

siblings(E):  D,F 

ancestors(F):   

descendents(G):   

subtree(C): 

Tree T 

10 

More Tree Terminology 

A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

depth(B): 

 

height(G): 

 

height(T): 

 

degree(B): 

 

branching 

factor(T): 

 

n-ary tree:  

 

Tree T 

11 

Binary Heap Properties 

A binary heap is a binary tree with two 

important properties that make it a good choice 

for priority queues: 

1. Completeness 

2. Heap Order 

 

Note: we will sometimes refer to a binary heap 

as simply a “heap”. 

12 

Completeness Property 

• A binary heap is a complete binary tree: 
– a binary tree with all levels full, except possibly the bottom 

level, which is filled left to right 

Examples: 

Height of a complete binary tree  

with n nodes? 



3 

13 

Heap Order Property 

Heap order property: For every non-root 

node X, the value in the parent of X is less 

than (or equal to) the value in X. 

15 30 

80 20 

10 

99 60 40 

80 20 

10 

50 700 

85 

which of these is a heap? 
14 

Heap Operations 

• Main ops:  insert, deleteMin 

• Key is to maintain 

– Completeness 

– Heap Order 

 

• Basic idea is to propagate changes 

up/down the tree, fixing order as we go 

15 

Heap – insert(val) 

Basic Idea:  

1. Put val at last leaf position 

2. Percolate up by repeatedly exchanging 

node with parent as long as needed 

16 

Insert: percolate up 

99 60 40 

80 20 

10 

50 700 

85 

65 15 

99 20 40 

80 15 

10 

50 700 

85 

65 60 

17 

Heap – deleteMin 

Basic Idea:  

1. Remove min element 

2. Put “last” leaf node value at root 

3. Find smallest child of node 

4. Swap node with its smallest child if needed. 

5. Repeat steps 3 & 4 until no swaps needed. 

18 

DeleteMin: percolate down 

99 60 40 

15 20 

10 

50 700 

85 

65 



4 

19 

DeleteMin: percolate down 

99 60 40 

65 20 

15 

50 700 

85 

20 

Representing Complete  

Binary Trees in an Array 

G E D 

C B 

A 

J K H I 

F 

L 

From node i: 

 

left child: 

right child: 

parent: 

7 

1 

2 3 

4 5 6 

9 8 10 11 12 

A B C D E F G H I J K L 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

21 

Why use an array? 

 

 

 

 

 

22 

DeleteMin Code 

Object deleteMin() { 

  assert(!isEmpty()); 

  returnVal = Heap[1]; 

  size--; 

  newPos =  

    percolateDown(1, 

        Heap[size + 1]); 

  Heap[newPos] =  

    Heap[size + 1]; 

  return returnVal; 

} 

int percolateDown(int hole, 

                  Object val) { 

while (2*hole <= size) { 

    left = 2*hole;  

    right = left + 1; 

    if (right ≤ size &&  

        Heap[right] < Heap[left]) 

      target = right; 

    else 

      target = left; 

 

    if (Heap[target] < val) { 

      Heap[hole] = Heap[target]; 

      hole = target; 

    } 

    else 

      break; 

  } 

  return hole; 

} 

runtime: 

(Java code in book) 

23 

Insert Code 

void insert(Object o) { 

  assert(!isFull()); 

  size++; 

  newPos = 

    percolateUp(size,o); 

  Heap[newPos] = o; 

} 

int percolateUp(int hole,  

                Object val) { 

  while (hole > 1 && 

         val < Heap[hole/2]) 

    Heap[hole] = Heap[hole/2]; 

    hole /= 2; 

  } 

  return hole; 

} 

runtime: 

(Java code in book) 24 

0 1 2 3 4 5 6 7 8 

Insert: 16, 32, 4, 69, 105, 43, 2 



5 

25 

More Priority Queue Operations 

  decreaseKey(nodePtr, amount):  
given a pointer to a node in the queue, reduce its priority 

 

Binary heap:  change priority of node and ________________ 

 

  increaseKey(nodePtr, amount):  
given a pointer to a node in the queue, increase its priority 

 

Binary heap: change priority of node and ________________ 

Why do we need a pointer? Why not simply data value? 

 

Worst case running times? 26 

More Priority Queue Operations 

 remove(objPtr): 
given a pointer to an object in the queue, remove it 

 

Binary heap:  ______________________________________ 

 

 findMax( ):  
Find the object with the highest value in the queue 

 

Binary heap: ______________________________________ 

Worst case running times? 

27 

More Binary Heap Operations 

 expandHeap( ): 
If heap has used up array, copy to new, larger array. 

• Running time: 
 

 buildHeap(objList):  
Given list of objects with priorities, fill the heap. 

• Running time: 

 

 

We do better with buildHeap... 

 
28 

Building a Heap: Take 1 

5 11 3 10 6 9 4 8 1 7 2 12 

29 

BuildHeap: Floyd’s Method 

Add elements arbitrarily to form a complete tree. 

Pretend it’s a heap and fix the heap-order property! 

2 7 1 8 4 

9 6 10 3 

11 5 

12 
Red nodes need 

to percolate 

down 

Key idea:  fix red 

nodes from 

bottom-up 

5 11 3 10 6 9 4 8 1 7 2 12 

30 

BuildHeap: Floyd’s Method 

6 7 1 8 4 

9 2 10 3 

11 5 

12 

6 7 10 8 4 

9 2 1 3 

11 5 

12 

11 7 10 8 4 

9 6 1 3 

2 5 

12 

11 7 10 8 4 

9 6 5 3 

2 1 

12 



6 

31 

Finally…  

11 7 10 8 12 

9 6 5 4 

2 3 

1 

32 

Buildheap pseudocode 

private void buildHeap() { 

 for ( int i = currentSize/2; i > 0; i-- ) 

  percolateDown( i ); 

} 

runtime: 

33 

Buildheap Analysis 

n/4 nodes percolate at most 1 level 

n/8 percolate at most 2 levels 

n/16 percolate at most 3 levels 

... 

runtime: 


