CSE 332: Data Structures

Priority Queues — Binary Heaps

Richard Anderson, Steve Seitz

Winter 2014

Administrative

- P1A due tonight (Monday) by 11:59pm
— via catalyst

 HW1 due beginning of class Wednesday
* Reading for this week: Chapter 6.1-6.5

Recall Queues

* FIFO: First-In, First-Out
— Print jobs
— File serving
— Phone calls and operators
— Lines at the Department of Licensing...

Priority Queues

Prioritize who goes first — a priority queue:
— treat ER patients in order of severity
— route network packets in order of urgency

— operating system can favor jobs of shorter
duration or those tagged as having higher
Importance

— Greedy optimization: “best first” problem solving

Priority Queue ADT

* Need a new ADT

» Operations: Insert an ltem,
Remove the “Best” ltem

insert deleteMin

Priority Queue ADT

1. PQueue data : collection of data with priority

2. PQueue operations
— Insert
— deleteMin
(also: create, destroy, is_empty)

3. PQueue property: if x has lower priority
than y, x will be deleted before y

1/13/2014 6

Potential implementations

insert deleteMin
Unsorted list (Array) O(l\o;i(%{'ﬁ\ On)
Unsorted list (Linked-List) | OC\) OCA

: + find o Hd
Sorted list (Array) %(ém ‘is\ﬂ\q:;o(n\ ,Qi@,u \e fem@Q

Sorted list (Linked-List) | 553 O

Binary Search Tree (BST) | O(~) - A
inary Search Tree (BST) ,Dgcﬁ
o ~

7 3

Binary Heap data structure

 binary heap (a kind of binary tree) for priority
queues:
— O(log n) worst case for both insert and deleteMin

— O(1) average insert

 It's optimized for priority queues. Lousy for other
types of operations (e.g., searching, sorting)

Tree Review

roof(T): A

leaves(T): D-F, |-N
children(B): D-F
parent(H): G
siblings(E): D,F
ancestors(F): 5, 5
descendents(G): H—-W
subtree(C):

More Tree Terminology

\
depth(B):
4’(-20 $ on P««\.Qm« rast Joce\t
he/ ht

;KC 3N /(L, (ov\?ﬁi— ﬂ/\

heig
— [/\o(SL\-\— (A\
degree(B) 5
C \\ (b r’/\
branching e ;esrq o a\ hocg~£
factor(T): L

n-ary tree:

_‘__ree \u\k\" \OQMC’(";'A‘) ‘(ZC..(TW V\ 10

Binary Heap Properties

A binary heap is a binary tree with two
important properties that make it a good choice
for priority queues:

1. Completeness (Sk ol pm/)\
2. Heap Order

Note: we will sometimes refer to a binary heap
as simply a “heap”.

11

Completeness Property

« A binary heap is a complete binary tree:

— a binary tree with all levels full, except possibly the bottom
level, which is filled left to right

Examples:
O
¢
AN
\"0 é\éé

Height of a compITle binary iree
with n nodes?
JO ”),2 N 12

Heap Order Property

Heap order property: For every non-root
node X, the value in the parent of X is less
than (or equal to) the value in X.

& P

which of these is a heap?

13

Heap Operations

* Main ops: insert, deleteMin

« Key is to maintain
— Completeness
— Heap Order

» Basic idea is to propagate changes
up/down the tree, fixing order as we go

14

Heap — insert(val)

Basic Idea:
1. Put val at last leaf position

2. Percolate up by repeatedly exchanging
node with parent as long as needed

15

Insert: percolate u
P C P

LN |
. ..

16

Heap — deleteMin

Basic Idea:

1. Remove min element

2. Put “last” leaf node value at root

3. Find smallest child of node

4. Swap node with its smallest child if needed.
5. Repeat steps 3 & 4 until no swaps needed.

Oles b

17

DeleteMin: percolate down

18

DeleteMin: percolate down

19

Representing Complete
Binary Trees in an Array

From node i:

left child: 2v
right child: Z v+
parent: [/9|

A/ B | C|D|E|F|G|H I J | K| L

0 1 2 3 4 5 o6 ¢ 8 9 10 11 12 13

20

Why use an array?

/Oc <(‘(L ; \Q‘/\&
@<<\/ ‘{1) 4/<C,§g 4cM/ e(,ew v\% ((ec\vf;\

Mare aaomeny dhared

DeleteMin Code

Object deleteMin() {
assert (!isEmpty());
returnVal = Heap[l];
size--;
newPos =

percolateDown (1,
Heap|[size + 1]);
Heap [newPos] =
Heap([size + 1];

return returnval;

}

runtime:

(Java code 1n book)

int percolateDown (int hole,
Object wval) {
while (2*hole <= size) {
left = 2*hole;
right = left + 1;
if (right < size &&
Heap[right] < Heap[left])
target = right;
else
target = left;

if (Heap[target] < wval) {
Heap[hole] = Heap[target];
hole = target;

}

else
break;

}

return hole; 22

}

Insert Code

void insert (Object o) { int percolateUp (int hole,

assert (!'isFull()); _ Object val) ({
while (hole > 1 &&

sizet+; val < Heap[hole/2])
newPos = Heap[hole] = Heap[hole/2];
hole /= 2;

percolateUp (size, 0); }

Heap [newPos] = o; return hole;

} }

runtime: OC l()§ V\x

(Java code 1n book) 23

3>

[®

Insert:elé/,32, 4, 69, 105

21324 |6\ [loS 12

24

More Priority Queue Operations

decreaseKey(nodePtr, amount):
given a pointer to a node in the queue, reduce its priority

Binary heap: change priority of node and 'PWCO(%‘L’ U

increaseKey(nodePtr, amount):
given a pointer to a node in the queue, increase its priority

Binary heap: change priority of node and ?3?(("'(?(" (gau)/\

Why do we need a pointer? Why not simply data value?
y ypacgn QCV\V)

Worst case running times? D, C [oj ,\\ 25

More Priority Queue Operations

remove(objPtr):
given a pointer to an object in the queue, remove it

Binary heap: rbcrmﬁe QJ)‘!‘P‘(\(& OQ\/ \ L (e-(e MIV\

findMax():
Find the object with the highest value in the queue

Binary heap:

[C’JZ/S% (fag -

o

Worst case running times? RN 26
Q)

)

More Binary Heap Operations

expandHeap():
If heap has used up array, copy to new, larger array.

* Running time: 6(,\\

buildHeap(objList):
Given list of objects, with pri%ities, fill the heap.

* Running tin@ N (ojh

We do better with buildHeap...

27

Building a Heap: Take=t

12

5

11

10

\

8

1

/

2

28

BuildHeap: Floyd’'s Method

1251131016 |94 |8 |17

2

Add elements arbitrarily to form a complete tree.
Pretend it's a heap and fix the heap-order property!

Red nodes need
to percolate
down

Key idea: fix red
nodes from
bottom-up

29

BuildHeap: Floyd’'s Method
(12 (12

Finally...
(L

b0000

31

Buildheap pseudocode

private void buildHeap () ({
for (int i = currentSize/2; i > 0;

percolateDown(i);

runtime:

i--)

32

Buildheap Analysis

n/4 nodes percolate at most 1 level
n/8 percolate at most 2 levels
n/16 percolate at most 3 levels

runtime:

33

