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Announcements 

• Homework requires you get the textbook 
(either E2 or E3) 

 

• Go to Thursdays sections 

 

• Homework #1 out on today (Wednesday) 

– Due at the beginning of class  
next Wednesday(Jan 17). 
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Algorithm Analysis 

• Correctness: 

– Does the algorithm do what is intended. 

 

• Performance: 

– Speed  time complexity 

– Memory space complexity 

 

• Why analyze? 

– To make good design decisions 

– Enable you to look at an algorithm (or code) 
and identify the bottlenecks, etc. 
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Correctness 

Correctness of an algorithm is established 
by proof.  Common approaches: 

 

– (Dis)proof by counterexample 

–Proof by contradiction 

–Proof by induction 

•Especially useful in recursive 
algorithms 
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Proof by Induction 

• Base Case: The algorithm is correct for 
a base case or two by inspection. 

 

• Inductive Hypothesis (n=k): Assume 
that the algorithm works correctly for 
the first k cases. 

 

• Inductive Step (n=k+1): Given the 
hypothesis above, show that the k+1 
case will be calculated correctly. 
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Recursive algorithm for sum 

• Write a recursive function to find the sum of 
the first n integers stored in array v. 

 

sum(int array v, int n) returns int 

  if n = 0 then 

    sum = 0 

  else 

    sum = nth number + sum of first n-1 numbers 

  return sum 
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Program Correctness by Induction 

• Base Case: 
 

 

• Inductive Hypothesis (n=k):  
 

 

• Inductive Step (n=k+1):  
 

8 

How to measure performance? 
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We will focus on analyzing time complexity.  
First, we have some “rules” to help measure 
how long it takes to do things: 

 

 

 

 

 

 

 

Second, we will be interested in best and 
worst case performance. 
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Analyzing Performance 

Basic operations 

Consecutive statements 

Conditionals 

Loops 

Function calls 

Recursive functions 

Constant time 

Sum of times 

Test, plus larger branch cost 

Sum of iterations 

Cost of function body 

Solve recurrence relation… 
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Complexity cases 

We’ll start by focusing on two cases. 

 

Problem size N 

– Worst-case complexity: max # steps 
algorithm takes on “most challenging” input 
of size N 
 

– Best-case complexity: min # steps 
algorithm takes on “easiest” input of size N 
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Exercise - Searching 

 

bool ArrayContains(int array[], int n, int key){ 

 // Insert your algorithm here 

 

 

 

 

 

 

} 

2 3 5 16 37 50 73 75 

What algorithm would you choose 

to implement this code snippet? 12 

Linear Search Analysis 

bool LinearArrayContains(int array[], int n, int key ) { 

 for( int i = 0; i < n; i++ ) {  

  if( array[i] == key ) 

      // Found it! 

      return true; 

 } 

 return false; 

} 

 

 

Best Case: 

  

 

Worst Case: 

  



3 

13 

Binary Search Analysis 

bool BinArrayContains( int array[], int low, int high, int key ) { 

 // The subarray is empty 
 if( low > high ) return false; 

 

 // Search this subarray recursively 
 int mid = (high + low) / 2; 

 if( key == array[mid] ) { 

     return true; 

 } else if( key < array[mid] ) { 

     return BinArrayFind( array, low, mid-1, key ); 

 } else { 

     return BinArrayFind( array, mid+1, high, key ); 

} 

 

 

Best case: 

  

 

Worst case: 

  

2 3 5 16 37 50 73 75 
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Solving Recurrence Relations 

1. Determine the recurrence relation and base case(s). 

 

 
2. “Expand” the original relation to find an equivalent 

expression in terms of the number of expansions (k). 

 

 

 

 
 

3. Find a closed-form expression by setting k to a value which 
reduces the problem to a base case 

15 

Linear Search vs Binary Search 

Linear Search Binary Search 

Best Case 4 5 at [middle] 

Worst Case 3n+3 7 log n + 9 
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Linear search—empirical analysis 

N (= array size) 

time 

(# ops) 

Each search produces a dot in above graph. 

Blue = less frequently occurring, Red = more frequent 

17 

Binary search—empirical analysis 

N (= array size) 

time 

(# ops) 

Each search produces a dot in above graph. 

Blue = less frequently occurring, Red = more frequent 
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Empirical comparison 

N (= array size) 

time 

(# ops) 

N (= array size) 

Linear search Binary search 

Gives additional information 
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Fast Computer vs. Slow Computer 

20 

Fast Computer vs. Smart Programmer 

(small data) 
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Fast Computer vs. Smart Programmer 

(big data) 
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Asymptotic Analysis 

• Consider only the order of the running time 
 

– A valuable tool when the input gets “large” 

 

– Ignores the effects of different machines or 

different implementations of same algorithm 
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Asymptotic Analysis 

• To find the asymptotic runtime, throw 
away the constants and low-order 
terms 

 
– Linear search is 

 

– Binary search is 

Remember: the “fastest” algorithm has the 

slowest growing function for its runtime 

)(33)( nOnnT LS

worst 

  )(log9log7)( 2 nOnnT BS

worst 
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Asymptotic Analysis 

Eliminate low order terms 

– 4n + 5  

– 0.5 n log n + 2n + 7  

– n3 + 3 2n + 8n   

 

Eliminate coefficients 
– 4n  

– 0.5 n log n  

– 3 2n => 
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Properties of Logs 

Basic: 

• A
logAB

 = B 

• logAA = 

  

Independent of base: 

• log(AB) = 

 

• log(A/B) = 

 

• log(AB) = 

 

• log((AB)
C
) = 

 

Changing base   multiply by constant 

– For example:  log2x = 3.22 log10x  

 

– More generally 

 

 

 

– Means we can ignore the base for 
asymptotic analysis  
(since we’re ignoring constant multipliers) 
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Properties of Logs 

n
A

n B

B

A log
log

1
log 










27 

Another example 

• Eliminate  
low-order  
terms 

 

• Eliminate  
constant  
coefficients 

16n3log8(10n2) + 100n2 
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Comparing functions 

• f(n) is an upper bound for h(n) 

   if h(n) ≤ f(n) for all n 

 

 

This is too strict – we mostly care about large n 

 

 

Still too strict if we want to ignore scale factors 
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Definition of Order Notation 

• h(n) є O(f(n))              Big-O  “Order” 

   if there exist positive constants c and n0 

   such that h(n) ≤ c f(n) for all n ≥ n0 

  

 

O(f(n)) defines a class (set) of functions 
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Order Notation: Intuition 

Although not yet apparent, as n gets “sufficiently 
large”, a(n) will be “greater than or equal to” b(n)  

a(n) = n3 + 2n2 

b(n) = 100n2 + 1000 
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Order Notation: Example 

100n2 + 1000    (n3 + 2n2) for all n  100 

So 100n2 + 1000  O(n3 + 2n2) 32 

Example 

h(n)  O( f(n) )     iff there exist positive 
constants c and n0 such that:  
h(n)   c f(n) for all n  n0 

 

Example: 

100n2 + 1000   1 (n3 + 2n2) for all n  100 
 
  So 100n2 + 1000  O(n3 + 2n2 ) 
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Constants are not unique 

h(n)  O( f(n) )     iff there exist positive 
constants c and n0 such that:  
h(n)   c f(n) for all n  n0 

 

Example: 

100n2 + 1000   1 (n3 + 2n2) for all n  100 

 

100n2 + 1000   1/2 (n3 + 2n2) for all n  198 
 
 
   

 

34 

Another Example:  Binary Search 

h(n)  O( f(n) )     iff there exist positive 
constants c and n0 such that:  
h(n)   c f(n) for all n  n0 

 

Is 7log2n + 9  O (log2n)? 
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Order Notation: 

Worst Case Binary Search 
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Some Notes on Notation 

Sometimes you’ll see (e.g., in Weiss) 

    

h(n) = O( f(n) ) 

 

or 

 

h(n) is O( f(n) ) 

 

These are equivalent to 

    

h(n)  O( f(n) ) 
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Big-O: Common Names 

– constant: O(1) 

– logarithmic: O(log n) (logkn, log n2  O(log n)) 

– linear:  O(n) 

– log-linear: O(n log n) 

– quadratic: O(n2) 

– cubic:  O(n3) 

– polynomial: O(nk)  (k is a constant) 

– exponential: O(cn)  (c is a constant > 1) 
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Asymptotic Lower Bounds 

• ( g(n) ) is the set of all functions 
asymptotically greater than or equal to g(n) 

 

• h(n)  ( g(n) ) iff 
There exist c>0 and n0>0 such that h(n)  c 
g(n) for all n  n0 
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Asymptotic Tight Bound 

• ( f(n) ) is the set of all functions 
asymptotically equal to f (n) 

 
• h(n)  ( f(n) ) iff 

    h(n)  O( f(n) ) and h(n)  (f(n) ) 

 - This is equivalent to: 

 lim ( )/ ( ) 0
n

h n f n c


 
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Full Set of Asymptotic Bounds 

• O( f(n) ) is the set of all functions 
asymptotically less than or equal to f(n) 

– o(f(n) ) is the set of all functions 
asymptotically strictly less than f(n) 

 

• ( g(n) ) is the set of all functions 
asymptotically greater than or equal to g(n) 

– ( g(n) ) is the set of all functions 
asymptotically strictly greater than g(n) 

 

• ( f(n) ) is the set of all functions 
asymptotically equal to f (n) 
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• h(n)  O( f(n) ) iff  
There exist c>0 and n0>0 such that h(n)   c f(n) for all n  n0 

 
• h(n)  o(f(n)) iff  

There exists an n0>0 such that h(n) <  c f(n) for all c>0 and   n  n0  
– This is equivalent to: 

 

• h(n)  ( g(n) ) iff 
There exist c>0 and n0>0 such that h(n)  c g(n) for all n  n0 

 

• h(n)  ( g(n) ) iff 
There exists an n0>0 such that h(n) > c g(n) for all c>0 and n  n0  

– This is equivalent to: 

 

• h(n)  ( f(n) ) iff 
h(n)  O( f(n) ) and h(n)  (f(n) ) 
– This is equivalent to: 

 

Formal Definitions 

lim ( )/ ( ) 0
n

h n f n




lim ( )/ ( )
n

h n g n




lim ( )/ ( ) 0
n

h n f n c


 
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Big-Omega et al. Intuitively 

Asymptotic Notation Mathematics 
Relation 

O  

  

 = 

o < 

 > 
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Complexity cases (revisited) 

Problem size N 
– Worst-case complexity: max # steps 

algorithm takes on “most challenging” input 
of size N 

– Best-case complexity: min # steps 
algorithm takes on “easiest” input of size N 

 

– Average-case complexity: avg # steps 
algorithm takes on random inputs of size N 

– Amortized complexity: max total # steps 
algorithm takes on M “most challenging” 
consecutive inputs of size N, divided by M 
(i.e., divide the max total by M). 
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Bounds vs. Cases 
Two orthogonal axes: 

 

– Bound Flavor 

• Upper bound (O, o) 

• Lower bound (, ) 

• Asymptotically tight () 

 

– Analysis Case 

• Worst Case (Adversary), Tworst(n) 

• Average Case, Tavg(n) 

• Best Case, Tbest(n) 

• Amortized, Tamort(n) 

 

One can estimate the bounds for any given case. 
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Bounds vs. Cases 
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Pros and Cons  

of Asymptotic Analysis 
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Big-Oh Caveats 
• Asymptotic complexity (Big-Oh) considers only large n 

– You can “abuse” it to be misled about trade-offs 

– Example: n1/10 vs. log n 

• Asymptotically n1/10 grows more quickly 

• But the “cross-over” point is around 5 * 1017 

• So n1/10 better for almost any real problem 
 

• Comparing O() for small n values can be misleading 

– Quicksort: O(nlogn)  

– Insertion Sort: O(n2) 

– Yet in reality Insertion Sort is faster for small n 

– We’ll learn about these sorts later 


