
1

CSE 332: Data Structures

Asymptotic Analysis

Richard Anderson, Steve Seitz

Winter 2014

2

Announcements

• Homework requires you get the textbook
(either E2 or E3)

• Go to Thursdays sections

• Homework #1 out on today (Wednesday)

– Due at the beginning of class
next Wednesday(Jan 17).

3

Algorithm Analysis

• Correctness:

– Does the algorithm do what is intended.

• Performance:

– Speed time complexity

– Memory space complexity

• Why analyze?

– To make good design decisions

– Enable you to look at an algorithm (or code)
and identify the bottlenecks, etc.

 4

Correctness

Correctness of an algorithm is established
by proof. Common approaches:

– (Dis)proof by counterexample

–Proof by contradiction

–Proof by induction

•Especially useful in recursive
algorithms

5

Proof by Induction

• Base Case: The algorithm is correct for
a base case or two by inspection.

• Inductive Hypothesis (n=k): Assume
that the algorithm works correctly for
the first k cases.

• Inductive Step (n=k+1): Given the
hypothesis above, show that the k+1
case will be calculated correctly.

6

Recursive algorithm for sum

• Write a recursive function to find the sum of
the first n integers stored in array v.

sum(int array v, int n) returns int

 if n = 0 then

 sum = 0

 else

 sum = nth number + sum of first n-1 numbers

 return sum

2

7

Program Correctness by Induction

• Base Case:

• Inductive Hypothesis (n=k):

• Inductive Step (n=k+1):

8

How to measure performance?

9

We will focus on analyzing time complexity.
First, we have some “rules” to help measure
how long it takes to do things:

Second, we will be interested in best and
worst case performance.

9

Analyzing Performance

Basic operations

Consecutive statements

Conditionals

Loops

Function calls

Recursive functions

Constant time

Sum of times

Test, plus larger branch cost

Sum of iterations

Cost of function body

Solve recurrence relation…

10

Complexity cases

We’ll start by focusing on two cases.

Problem size N

– Worst-case complexity: max # steps
algorithm takes on “most challenging” input
of size N

– Best-case complexity: min # steps
algorithm takes on “easiest” input of size N

11

Exercise - Searching

bool ArrayContains(int array[], int n, int key){

 // Insert your algorithm here

}

2 3 5 16 37 50 73 75

What algorithm would you choose

to implement this code snippet? 12

Linear Search Analysis

bool LinearArrayContains(int array[], int n, int key) {

 for(int i = 0; i < n; i++) {

 if(array[i] == key)

 // Found it!

 return true;

 }

 return false;

}

Best Case:

Worst Case:

3

13

Binary Search Analysis

bool BinArrayContains(int array[], int low, int high, int key) {

 // The subarray is empty
 if(low > high) return false;

 // Search this subarray recursively
 int mid = (high + low) / 2;

 if(key == array[mid]) {

 return true;

 } else if(key < array[mid]) {

 return BinArrayFind(array, low, mid-1, key);

 } else {

 return BinArrayFind(array, mid+1, high, key);

}

Best case:

Worst case:

2 3 5 16 37 50 73 75

14

Solving Recurrence Relations

1. Determine the recurrence relation and base case(s).

2. “Expand” the original relation to find an equivalent

expression in terms of the number of expansions (k).

3. Find a closed-form expression by setting k to a value which
reduces the problem to a base case

15

Linear Search vs Binary Search

Linear Search Binary Search

Best Case 4 5 at [middle]

Worst Case 3n+3 7 log n + 9

16

Linear search—empirical analysis

N (= array size)

time

(# ops)

Each search produces a dot in above graph.

Blue = less frequently occurring, Red = more frequent

17

Binary search—empirical analysis

N (= array size)

time

(# ops)

Each search produces a dot in above graph.

Blue = less frequently occurring, Red = more frequent
18

Empirical comparison

N (= array size)

time

(# ops)

N (= array size)

Linear search Binary search

Gives additional information

4

19

Fast Computer vs. Slow Computer

20

Fast Computer vs. Smart Programmer

(small data)

21

Fast Computer vs. Smart Programmer

(big data)

22

Asymptotic Analysis

• Consider only the order of the running time

– A valuable tool when the input gets “large”

– Ignores the effects of different machines or

different implementations of same algorithm

23

Asymptotic Analysis

• To find the asymptotic runtime, throw
away the constants and low-order
terms

– Linear search is

– Binary search is

Remember: the “fastest” algorithm has the

slowest growing function for its runtime

)(33)(nOnnT LS

worst 

 )(log9log7)(2 nOnnT BS

worst 

24

Asymptotic Analysis

Eliminate low order terms

– 4n + 5 

– 0.5 n log n + 2n + 7 

– n3 + 3 2n + 8n 

Eliminate coefficients
– 4n 

– 0.5 n log n 

– 3 2n =>

5

25

Properties of Logs

Basic:

• A
logAB

 = B

• logAA =

Independent of base:

• log(AB) =

• log(A/B) =

• log(AB) =

• log((AB)
C
) =

Changing base  multiply by constant

– For example: log2x = 3.22 log10x

– More generally

– Means we can ignore the base for
asymptotic analysis
(since we’re ignoring constant multipliers)

26

Properties of Logs

n
A

n B

B

A log
log

1
log 










27

Another example

• Eliminate
low-order
terms

• Eliminate
constant
coefficients

16n3log8(10n2) + 100n2

28

Comparing functions

• f(n) is an upper bound for h(n)

 if h(n) ≤ f(n) for all n

This is too strict – we mostly care about large n

Still too strict if we want to ignore scale factors

29

Definition of Order Notation

• h(n) є O(f(n)) Big-O “Order”

 if there exist positive constants c and n0

 such that h(n) ≤ c f(n) for all n ≥ n0

O(f(n)) defines a class (set) of functions

30

Order Notation: Intuition

Although not yet apparent, as n gets “sufficiently
large”, a(n) will be “greater than or equal to” b(n)

a(n) = n3 + 2n2

b(n) = 100n2 + 1000

6

31

Order Notation: Example

100n2 + 1000  (n3 + 2n2) for all n  100

So 100n2 + 1000  O(n3 + 2n2) 32

Example

h(n)  O(f(n)) iff there exist positive
constants c and n0 such that:
h(n)  c f(n) for all n  n0

Example:

100n2 + 1000  1 (n3 + 2n2) for all n  100

 So 100n2 + 1000  O(n3 + 2n2)

33

Constants are not unique

h(n)  O(f(n)) iff there exist positive
constants c and n0 such that:
h(n)  c f(n) for all n  n0

Example:

100n2 + 1000  1 (n3 + 2n2) for all n  100

100n2 + 1000  1/2 (n3 + 2n2) for all n  198

34

Another Example: Binary Search

h(n)  O(f(n)) iff there exist positive
constants c and n0 such that:
h(n)  c f(n) for all n  n0

Is 7log2n + 9  O (log2n)?

35

Order Notation:

Worst Case Binary Search

36

Some Notes on Notation

Sometimes you’ll see (e.g., in Weiss)

h(n) = O(f(n))

or

h(n) is O(f(n))

These are equivalent to

h(n)  O(f(n))

7

37

Big-O: Common Names

– constant: O(1)

– logarithmic: O(log n) (logkn, log n2  O(log n))

– linear: O(n)

– log-linear: O(n log n)

– quadratic: O(n2)

– cubic: O(n3)

– polynomial: O(nk) (k is a constant)

– exponential: O(cn) (c is a constant > 1)

38

Asymptotic Lower Bounds

• (g(n)) is the set of all functions
asymptotically greater than or equal to g(n)

• h(n)  (g(n)) iff
There exist c>0 and n0>0 such that h(n)  c
g(n) for all n  n0

39

Asymptotic Tight Bound

• (f(n)) is the set of all functions
asymptotically equal to f (n)

• h(n)  (f(n)) iff

 h(n)  O(f(n)) and h(n)  (f(n))

 - This is equivalent to:

 lim ()/ () 0
n

h n f n c


 

40

Full Set of Asymptotic Bounds

• O(f(n)) is the set of all functions
asymptotically less than or equal to f(n)

– o(f(n)) is the set of all functions
asymptotically strictly less than f(n)

• (g(n)) is the set of all functions
asymptotically greater than or equal to g(n)

– (g(n)) is the set of all functions
asymptotically strictly greater than g(n)

• (f(n)) is the set of all functions
asymptotically equal to f (n)

41

• h(n)  O(f(n)) iff
There exist c>0 and n0>0 such that h(n)  c f(n) for all n  n0

• h(n)  o(f(n)) iff

There exists an n0>0 such that h(n) < c f(n) for all c>0 and n  n0
– This is equivalent to:

• h(n)  (g(n)) iff
There exist c>0 and n0>0 such that h(n)  c g(n) for all n  n0

• h(n)  (g(n)) iff
There exists an n0>0 such that h(n) > c g(n) for all c>0 and n  n0

– This is equivalent to:

• h(n)  (f(n)) iff
h(n)  O(f(n)) and h(n)  (f(n))
– This is equivalent to:

Formal Definitions

lim ()/ () 0
n

h n f n




lim ()/ ()
n

h n g n




lim ()/ () 0
n

h n f n c


 

42

Big-Omega et al. Intuitively

Asymptotic Notation Mathematics
Relation

O 

 

 =

o <

 >

8

43

Complexity cases (revisited)

Problem size N
– Worst-case complexity: max # steps

algorithm takes on “most challenging” input
of size N

– Best-case complexity: min # steps
algorithm takes on “easiest” input of size N

– Average-case complexity: avg # steps
algorithm takes on random inputs of size N

– Amortized complexity: max total # steps
algorithm takes on M “most challenging”
consecutive inputs of size N, divided by M
(i.e., divide the max total by M).

44

Bounds vs. Cases
Two orthogonal axes:

– Bound Flavor

• Upper bound (O, o)

• Lower bound (, )

• Asymptotically tight ()

– Analysis Case

• Worst Case (Adversary), Tworst(n)

• Average Case, Tavg(n)

• Best Case, Tbest(n)

• Amortized, Tamort(n)

One can estimate the bounds for any given case.

45

Bounds vs. Cases

46

Pros and Cons

of Asymptotic Analysis

47

Big-Oh Caveats
• Asymptotic complexity (Big-Oh) considers only large n

– You can “abuse” it to be misled about trade-offs

– Example: n1/10 vs. log n

• Asymptotically n1/10 grows more quickly

• But the “cross-over” point is around 5 * 1017

• So n1/10 better for almost any real problem

• Comparing O() for small n values can be misleading

– Quicksort: O(nlogn)

– Insertion Sort: O(n2)

– Yet in reality Insertion Sort is faster for small n

– We’ll learn about these sorts later

