CSE 332 Team

« Instructors: Richard Anderson, Steve Seitz

CSE 332: Data Structures . TAs:
Winter 2014
Richard Anderson, Steve Seitz { /
Lecture 1 ‘ Hyéin Aaron | Danil David Sam
Kim Nech Noteboom Swanson Wilson
Today’s Outline Course Information
* Introductions Web page:
* Administrative Info http://www.cs.washington.edu/332
* What is this course about?
* Review: queues and stacks Text: Weiss, Data Structures & Algorithm
Analysis in Java, 3 Edition, 2012.
(or buy 2" edition—1/3 price on Amazon!)
Communication Written homeworks
Instructors
» cse332-instr@cs.washington.edu Written homeworks (8 total)
> (or our individual addresses) » Assigned each Wednesday
Announcements > Due at the start of class following Wednesday
» cse332a_wild@u, cse332b_wil4d@u » No late homeworks accepted
> (you are automatically subscribed @u)
Discussion
» Discussion board linked off home page
5 6

Projects

* Programming projects (3 total, with phases)
» In Java
» Eclipse encouraged
» Turned in electronically

» Can use a “late day” for 1 project of your choice
Must email TA in advance

Project 1 out today

* Soundblaster! Reverse a song

> ak.a., “backmasking”
* Use astack

> Implement as array and as linked list
* Read the website

> Detailed description of assignment

> Detailed description of how programming projects are
graded

« Phase A due Monday, Jan 13 (11:59pm)
> Electronic submission

Overall grading

Grading
25% - Written Homework Assignments
30% - Programming Assignments
20% - Midterm Exam (Feb 10)
25% - Final Exam (March 17)

Collaboration

Read policy on website carefully

» HWs must be done solo

 But you can discuss problems with others as
long as you follow the Gilligan’s island rule

» Project 1 is solo (out today)
» Project 2 & 3 with a partner

Section

Meet on Thursdays

What happens there?

Answer questions about current homework
Previous homeworks returned and discussed
Discuss the project (getting started, getting
through it, answering questions)

Finer points of Java, eclipse, etc.

Reinforce lecture material

Homework for Today!!

Reading in Weiss
Chapter 1 — (Review) Mathematics and Java
Chapter 2 — (Next lecture) Algorithm Analysis
Chapter 3 — (Project #1) Lists, Stacks, & Queues

Today’s Outline

Introductions

Administrative Info

What is this course about?
Review: Queues and stacks

13

Steve’s view of CSE

» 100 level courses, some 300 level
» how to do stuff

* This course
» Really cool ways to do stuff

* 400 level courses
» How to do really cool stuff

Common tasks

15

Common tasks

» Many possible solutions
» Choice of algorithm, data structures matters
» What properties do we want?

Example: Fibonacci

n 1 2 3 4 5 6
Fb1 1 2 3 5 8

int £ib(int n)
{
if(n <=2)
return 1;

else

return fib(n - 1) + fib(n - 2);

17

Why should we care?

» Computers are getting faster
> No need to optimize

* Libraries: experts have done it for you

How to be an expert

* Tricks of the trade
» Knowledge
> Analysis
» Style

19

Program Abstraction

Problem defn:

Algorithm:

Implementation:

Data Abstraction

Abstract Data Type (ADT):

Data Structure:

Implementation:

21

Terminology

+ Abstract Data Type (ADT)
> Mathematical description of an object with set of
operations on the object. Useful building block.
+ Algorithm
> A high level, language-independent, description of
a step-by-step process.
» Data structure
> A specific organization of the data to accompany
algorithms for an abstract data type.
+ Implementation of data structure

> A specific implementation in a specific language.
22

Today’s Outline

* Introductions

* Administrative Info

* What is this course about?
* Review: queues and stacks

23

First Example: Queue ADT

* FIFO: First In First Out
* Queue operations

create

destroy G enuele, ppcpg |dequeue
enqueue

dequeue

is_empty

Queues in practice

* Print jobs
* File serving
» Phone calls and operators

(Later, we will consider “priority queues.”)

25

Array Queue Data Structure

size-1

0
Q \b\c\d\e\f“\ \
back
enqueue (Object x) {
Q[back] = x
back = (back + 1)

}

dequeue () {
x = Q[0]
shiftLeftOne ()
Back = (back - 1)
return x

What's missing in these
functions?

How to find K-th element
in the queue?

Circular Array Queue Data Structure

size-1

\OHHHHHHHHHH
bjcidle|f
N i f

enqueue (Object x) { front back
assert(!is_full())
Q[back] = x
back = (back + 1)
} How to find K-th element in
the queue?

How test for empty/full list?

dequeue () {
assert(!is_empty())
x = Q[front]
front = (front + 1)
return x

What to do when full?

Linked List Queue Data Structure

E L[F—{d[F—fe[4N

front

void enqueue (Object x) {
if (is_empty())

front = back = new Node (x)

else {

back->next = new Node (x)

back = back->next
}
}
bool is_empty() {
return front == null

}

back

Object dequeue() {
assert(!is_empty())
return_data = front->data
temp = front
front = front->next
delete temp
return return_data

Circular Array vs. Linked List

« Advantages of circular array?

« Advantages of linked list?

29

Second Example: Stack ADT

* LIFO: Last In First Out

» Stack operations
create

destroy

push

pop

top

is_empty

v v v v v~

A\ K’EDCBA

TmMmOOw

Stacks in Practice

Function call stack
Removing recursion
Balancing symbols (parentheses)

Evaluating postfix or “reverse Polish”
notation

31

Assigned readings

Reading in Weiss
Chapter 1 — (Review) Mathematics and Java
Chapter 2 — (Next lecture) Algorithm Analysis
Chapter 3 — (Project #1) Lists, Stacks, & Queues

