
CSE 332: Data Structures

Winter 2014

Richard Anderson, Steve Seitz

Lecture 1

2

CSE 332 Team

• Instructors: Richard Anderson, Steve Seitz

• TAs:

Jacob
Gile

Hyein
Kim

Aaron
Nech

Daniel
Noteboom

David
Swanson

Sam
Wilson

3

Today’s Outline

• Introductions

• Administrative Info

• What is this course about?

• Review: queues and stacks

4

Course Information

Web page:
http://www.cs.washington.edu/332

Text: Weiss, Data Structures & Algorithm
Analysis in Java, 3rd Edition, 2012.

(or buy 2nd edition—1/3 price on Amazon!)

5

Communication

Instructors
› cse332-instr@cs.washington.edu

› (or our individual addresses)

Announcements
› cse332a_wi14@u, cse332b_wi14@u

› (you are automatically subscribed @u)

Discussion
› Discussion board linked off home page

6

Written homeworks

Written homeworks (8 total)

› Assigned each Wednesday

› Due at the start of class following Wednesday

› No late homeworks accepted

7

Projects

• Programming projects (3 total, with phases)
› In Java

› Eclipse encouraged

› Turned in electronically

› Can use a “late day” for 1 project of your choice
Must email TA in advance

8

Project 1 out today

• Soundblaster! Reverse a song
› a.k.a., “backmasking”

• Use a stack
› Implement as array and as linked list

• Read the website
› Detailed description of assignment

› Detailed description of how programming projects are
graded

• Phase A due Monday, Jan 13 (11:59pm)
› Electronic submission

9

Overall grading

Grading

25% - Written Homework Assignments

30% - Programming Assignments

20% - Midterm Exam (Feb 10)

25% - Final Exam (March 17)

10

Collaboration

Read policy on website carefully

› HWs must be done solo

• But you can discuss problems with others as
long as you follow the Gilligan’s island rule

› Project 1 is solo (out today)

› Project 2 & 3 with a partner

11

Section

Meet on Thursdays

What happens there?

› Answer questions about current homework

› Previous homeworks returned and discussed

› Discuss the project (getting started, getting
through it, answering questions)

› Finer points of Java, eclipse, etc.

› Reinforce lecture material

12

Homework for Today!!

Reading in Weiss

Chapter 1 – (Review) Mathematics and Java

Chapter 2 – (Next lecture) Algorithm Analysis

Chapter 3 – (Project #1) Lists, Stacks, & Queues

13

Today’s Outline

• Introductions

• Administrative Info

• What is this course about?

• Review: Queues and stacks

Steve’s view of CSE

• 100 level courses, some 300 level

› how to do stuff

• This course

› Really cool ways to do stuff

• 400 level courses

› How to do really cool stuff
14

15

Common tasks

16

Common tasks

• Many possible solutions

› Choice of algorithm, data structures matters

› What properties do we want?

17

Example: Fibonacci

int fib(int n)

{

if(n <= 2)

return 1;

else

return fib(n - 1) + fib(n - 2);

}

n 1 2 3 4 5 6 …

Fib 1 1 2 3 5 8 …

18

Why should we care?

• Computers are getting faster

› No need to optimize

• Libraries: experts have done it for you

19

How to be an expert

• Tricks of the trade

› Knowledge

› Analysis

› Style

20

Program Abstraction

Problem defn:

Algorithm:

Implementation:

21

Data Abstraction

Abstract Data Type (ADT):

Data Structure:

Implementation:

22

Terminology

• Abstract Data Type (ADT)
› Mathematical description of an object with set of

operations on the object. Useful building block.

• Algorithm
› A high level, language-independent, description of

a step-by-step process.

• Data structure
› A specific organization of the data to accompany

algorithms for an abstract data type.

• Implementation of data structure
› A specific implementation in a specific language.

23

Today’s Outline

• Introductions

• Administrative Info

• What is this course about?

• Review: queues and stacks

24

• FIFO: First In First Out

• Queue operations
create

destroy

enqueue

dequeue

is_empty

First Example: Queue ADT

F E D C Benqueue dequeue
G A

25

• Print jobs

• File serving

• Phone calls and operators

(Later, we will consider “priority queues.”)

Queues in practice

26

Array Queue Data Structure

enqueue(Object x) {
Q[back] = x
back = (back + 1)

}

b c d e fQ
0 size - 1

back

dequeue() {

x = Q[0]

shiftLeftOne()

Back = (back – 1)

return x

}

What’s missing in these
functions?

How to find K-th element
in the queue?

27

Circular Array Queue Data Structure

enqueue(Object x) {
assert(!is_full())
Q[back] = x
back = (back + 1)

}

b c d e fQ
0 size - 1

front back

dequeue() {

assert(!is_empty())

x = Q[front]

front = (front + 1)

return x

}

How test for empty/full list?

How to find K-th element in
the queue?

What to do when full?

28

Linked List Queue Data Structure

b c d e f

front back

void enqueue(Object x) {

if (is_empty())

front = back = new Node(x)

else {

back->next = new Node(x)

back = back->next

}

}

bool is_empty() {

return front == null

}

Object dequeue() {

assert(!is_empty())

return_data = front->data

temp = front

front = front->next

delete temp

return return_data

}

29

Circular Array vs. Linked List

• Advantages of circular array?

• Advantages of linked list?

30

Second Example: Stack ADT

• LIFO: Last In First Out

• Stack operations
› create

› destroy

› push

› pop

› top

› is_empty

A

B
C
D
E
F

E D C B A

F

31

Stacks in Practice

• Function call stack

• Removing recursion

• Balancing symbols (parentheses)

• Evaluating postfix or “reverse Polish”
notation

32

Assigned readings

Reading in Weiss

Chapter 1 – (Review) Mathematics and Java

Chapter 2 – (Next lecture) Algorithm Analysis

Chapter 3 – (Project #1) Lists, Stacks, & Queues

