CSE332 Week 2 Section Worksheet Solutions

1. Prove $f(n)$ is $O(g(n))$ where
a.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=7 \mathrm{n} \\
& \mathrm{~g}(\mathrm{n})=\mathrm{n} / 10
\end{aligned}
$$

Solution:
According to the definition of O() , we need to find positive real \#'s $\mathrm{n}_{0} \& \mathrm{c}$ so that $\mathrm{f}(\mathrm{n})<=\mathrm{c}^{*} \mathrm{~g}(\mathrm{n})$ for all $\mathrm{n}>=\mathrm{n}_{0}$
So, set one of them, solve the equation. $\mathrm{n}_{0}=1 \& \mathrm{c}$ greater than or equal to 70 works.
b.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=1000 \\
& \mathrm{~g}(\mathrm{n})=3 \mathrm{n}^{3}
\end{aligned}
$$

Solution:
According to the definition of O() , we need to find positive real \#'s $\mathrm{n}_{0} \& \mathrm{c}$ so that $\mathrm{f}(\mathrm{n})<=\mathrm{c} * \mathrm{~g}(\mathrm{n})$ for all $\mathrm{n}>=\mathrm{n}_{0}$
Easiest way to do this would be to set $\mathrm{n}_{0}=1$ and solve the equation. $\mathrm{n}_{0}=1$ and any c from 334 and up works.
c.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=7 \mathrm{n}^{2}+3 \mathrm{n} \\
& \mathrm{~g}(\mathrm{n})=\mathrm{n}^{4}
\end{aligned}
$$

Solution:
According to the definition of O() , we need to find positive real \#'s $\mathrm{n}_{0} \& \mathrm{c}$ so that $\mathrm{f}(\mathrm{n})<=\mathrm{c}^{*} \mathrm{~g}(\mathrm{n})$ for all $\mathrm{n}>=\mathrm{n}_{0}$
Easiest way to do this would be to set $\mathrm{n}_{0}=1$ and solve the equation. We then get $\mathrm{c}=10$, and g rises more quickly than f after that. There are many more other such solutions, just make sure you plug them back in to check that they work.

These, you could solve in a number of ways. You could also graph them and observe their behavior to find an appropriate value.
d.
$f(n)=n+2 n \log n$
$g(n)=n \log n$
Solution:

$$
\mathrm{n}_{0}=2 \& \mathrm{c}=3
$$

The values we choose do depend on the base of the log; here we'll assume base 2 To keep the math simple, we choose n_{0} of 2 . Solving the equation gets us $\mathrm{c}=3$.

We could also use \log base 10 , and we'd get $\mathrm{c}=3$, and $\mathrm{n}_{0}=10$. Or $\mathrm{n}_{0}=2, \mathrm{c}=10$.
2. True or false, \& explain
a. $f(n)$ is $\Theta(g(n))$ implies $f(n)$ is $O(g(n))$

Solution:
True: Based on the definition of $\Theta, f(n)$ is $O(g(n))$
b. $f(n)$ is $\Theta(g(n))$ implies $g(n)$ is $\Theta(f(n))$

Solution:
True: Intuitively, Θ is an equals, and so is symmetric.
More specifically, we know
f is $\mathrm{O}(\mathrm{g}) \& \mathrm{f}$ is $\Omega(\mathrm{g})$
so
There exist positive \# c, $\mathrm{c}^{\prime}, \mathrm{n}_{0} \& \mathrm{n}_{0}{ }^{\prime}$ such that

$$
\mathrm{f}(\mathrm{n})<=\operatorname{cg}(\mathrm{n}) \text { for all } \mathrm{n}>=\mathrm{n}_{0}
$$

and

$$
\mathrm{f}(\mathrm{n})>=\mathrm{c}^{\prime} \mathrm{g}(\mathrm{n}) \text { for all } \mathrm{n}>=\mathrm{n}_{0} \text {, }
$$

so

$$
\mathrm{g}(\mathrm{n})<=\mathrm{f}(\mathrm{n}) / \mathrm{c}^{\prime} \text { for all } \mathrm{n}>=\mathrm{n}_{0} \text {, }
$$

and

$$
\mathrm{g}(\mathrm{n})>=\mathrm{f}(\mathrm{n}) / \mathrm{c} \text { for all } \mathrm{n}>=\mathrm{n}_{0}
$$

so g is $O(f)$ and g is $\Omega(f)$
so g is $\Theta(f)$
c. $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ implies $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$

Solution:
False: Counter example: $\mathrm{f}(\mathrm{n})=\mathrm{n}^{2} \& \mathrm{~g}(\mathrm{n})=\mathrm{n}$; $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$, but $\mathrm{f}(\mathrm{n})$ is NOT $\mathrm{O}(\mathrm{g}(\mathrm{n}))$
3. Find functions $f(n)$ and $g(n)$ such that $f(n)$ is $O(g(n))$ and the constant c for the definition of O() must be >1. That is, find $\mathrm{f} \& \mathrm{~g}$ such that c must be greater than 1 , as there is no sufficient n_{0} when $\mathrm{c}=1$.
Solution: Basically, you need to think up two functions where one is always greater than the other and never crosses, but if you multiply one of them by something, there is a crossing point where they reverse, and it will shoot up past the other function.

Consider

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=\mathrm{n}+1 \\
& \mathrm{~g}(\mathrm{n})=\mathrm{n}
\end{aligned}
$$

we know $f(n)$ is $O(g(n))$; both run in linear time
Yet $\mathrm{f}(\mathrm{n})>\mathrm{g}(\mathrm{n})$ for all values of n ; no n_{0} we pick will help with this if we set $\mathrm{c}=1$.
Instead, we need to pick c to be something else; say, 2.

$$
\mathrm{n}+1<=2 \mathrm{n} \text { for } \mathrm{n}>=1
$$

4. Write the O() run-time of the functions with the following recurrence relations
a. $T(n)=3+T(n-1)$, where $T(0)=1$

Solution:
$\mathrm{T}(\mathrm{n})=3+3+\mathrm{T}(\mathrm{n}-2)=3+3+3+\mathrm{T}(\mathrm{n}-3)=\ldots=3 \mathrm{k}+\mathrm{T}(0)=3 \mathrm{k}+1$, where $\mathrm{k}=\mathrm{n}$, so $\mathrm{O}(\mathrm{n})$ time.
b. $T(n)=3+T(n / 2)$, where $T(1)=1$

Solution:

$$
\mathrm{T}(\mathrm{n})=3+3+\mathrm{T}(\mathrm{n} / 4)=3+3+3+\mathrm{T}(\mathrm{n} / 8)=\ldots=3 \mathrm{k}+\mathrm{T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)
$$

we want $n / 2^{k}=1$ (since we know what $T(1)$ is), so $k=\log _{2} n$
so $T(n)=3 \log n+1$, so $O(\operatorname{logn})$ time.
c. $T(n)=3+T(n-1)+T(n-1)$, where $T(0)=1$

Solution:
We can re-write $T(n)$ as $T(n)=3+2 T(n-1)$
Then to expand T(n)
T(n)
$=3+2(3+2 T(n-2))$
$=3+2(3+2(3+2 T(n-3)))$
$=3+2(3+2(3+2(3+2 T(n-4))))$
$=3 \cdot 2^{0}+3 \cdot 2^{1}+3 \cdot 2^{2}+\cdots+3 \cdot 2^{k-1}+2^{k} T(0)$ where k is the number of iterations
$=\sum_{i=0}^{k-1} 3 \cdot 2^{i}+2^{k} \cdot 1$
Because $\sum_{i=0}^{j} m^{i}=m^{j+1}-1$, we can replace the summation with
$=3 \cdot\left(2^{k}-1\right)+2^{k} \cdot 1$
And in this case, since we know that the number of iterations that occur is just $\mathrm{n}, \mathrm{k}=\mathrm{n}$, and so $=4 \cdot 2^{n}-3$
and we see that have $\mathrm{T}(\mathrm{n})=8 \cdot 2^{n}$, and thus $\mathrm{T}(\mathrm{n})$ is in $\mathrm{O}\left(2^{\mathrm{n}}\right)$.
Basically, since we can tell the \# of calls to T() is doubling every time we expand it further, it runs in $\mathrm{O}\left(2^{\mathrm{n}}\right)$ time.
5. Prove by induction that the $\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$

First, check the base case. Set $\mathrm{n}=1$, and show that the right-hand side of the equation above is equal to $0^{\wedge} 2+1^{\wedge} 2$.

Second, do the induction step.

$$
\begin{aligned}
& 1+2^{2}+3^{2}+\ldots+n^{2}+(n+1)^{2} \\
= & \frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
= & \frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6}=\frac{(n+1)(n(2 n+1)+6(n+1))}{6} \\
= & \frac{(n+1)\left(2 n^{2}+n+6 n+6\right)}{6}=\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6} \\
= & \frac{(n+1)(n+2)(2 n+3)}{6}=\frac{(n+1)(n+2)(2(n+1)+1)}{6}
\end{aligned}
$$

The final expression, on the right, is the same as if we had substituted ($n+1$) for (n) in the original equation, and hence we have proven the equation true for the inductive case.

(equation images in the solution to this problem above, courtesy of

http://pirate.shu.edu/~wachsmut/ira/infinity/answers/sm_sq_cb.html)
6. What's the O() run-time of this code fragment in terms of n :
a)

$$
\begin{aligned}
& \text { int } \mathrm{x}=0 ; \\
& \text { for(int } \mathrm{i}=\mathrm{n} ; \mathrm{i}>=0 ; \mathrm{i}--) \\
& \quad \operatorname{if((i\% 3)==0)\text {break;}} \\
& \quad \text { else } \mathrm{x}+=\mathrm{i} ;
\end{aligned}
$$

Solution:
At a glance we see a loop and it looks like it should be $O(n)$; it looks like we go through the loop n times.
However, that 'break' makes things a bit weirder. Consider how the loop will work for any real data; we start at some n, count backwards until the value is a multiple of 3 , at which point we break.
So the loop's code will run at most 3 times (not a function of n); so the whole thing is $\mathrm{O}(1)$.
**Recall that ' $\%$ ' is the remainder operator; $\mathrm{i} \% 3$ divides i by 3 and returns the remainder (which will be 0,1 or 2).
b) $\mathrm{O}\left(n^{3}\right)$

Outer loop is n. Inner loop is $\frac{n^{2}}{3}$ times. Hence, the whole thing runs in $\frac{n^{3}}{3}$ time. Dropping the $1 / 3$ constant, we get $\mathrm{O}\left(n^{3}\right)$
c) This one is trickier. Outer loop runs in n, but inner loop runs in $i^{*} i$ time. Which means the first time the inner loop runs, i is only 0 , so the inner loop runs 0 times. Next, i is 1 , so inner loop runs 1 time. Next $\mathrm{i}=2$, inner loop hence runs i^{2} times, which is 4 . Next time, $\mathrm{i}=3$, inner loop goes 9 times. And so forth. So the number of executions ends up being $0+1+4+9+\ldots+n^{2}$ times. We can use the formula we just found in problem 5 here, to represent this summation, $\frac{n(n+1)(2 n+1)}{6}$

