
CSE332 Week 2 Section Worksheet Solutions

1. Prove f(n) is O(g(n)) where
a.

f(n)=7n
g(n)=n/10

Solution:
According to the definition of O(), we need to find positive real #’s n0 & c so that

f(n)<=c*g(n) for all n>=n0
So, set one of them, solve the equation. n0=1 & c greater than or equal to 70 works.

b.
f(n)=1000
g(n)=3n3

Solution:
According to the definition of O(), we need to find positive real #’s n0 & c so that

f(n)<=c*g(n) for all n>=n0
Easiest way to do this would be to set n0=1 and solve the equation. n0=1 and any c from

334 and up works.

c.
f(n)=7n2+3n
g(n)=n4

Solution:
According to the definition of O(), we need to find positive real #’s n0 & c so that

f(n)<=c*g(n) for all n>=n0
Easiest way to do this would be to set n0=1 and solve the equation. We then get c=10, and

g rises more quickly than f after that. There are many more other such solutions, just make sure
you plug them back in to check that they work.

These, you could solve in a number of ways. You could also graph them and observe
their behavior to find an appropriate value.

d.
f(n)=n+2nlogn
g(n)=nlogn

Solution:
n0=2 & c=3
The values we choose do depend on the base of the log; here we’ll assume base 2

To keep the math simple, we choose n0 of 2. Solving the equation gets us c=3.
We could also use log base 10, and we’d get c = 3, and n0 = 10. Or n0 = 2, c=10.

2. True or false, & explain

a. f(n) is Θ(g(n)) implies f(n) is O(g(n))
Solution:

True: Based on the definition of Θ, f(n) is O(g(n))

b. f(n) is Θ(g(n)) implies g(n) is Θ(f(n))
Solution:

True: Intuitively, Θ is an equals, and so is symmetric.
More specifically, we know

f is O(g) & f is Ω(g)
so

There exist positive # c, c’, n0 & n0’ such that
f(n)<=cg(n) for all n>=n0

and
f(n)>=c’g(n) for all n>=n0’

so
g(n)<=f(n)/c’ for all n>=n0’

and
g(n)>=f(n)/c for all n>=n0

so g is O(f) and g is Ω(f)
so g is Θ(f)

c. f(n) is Ω(g(n)) implies f(n) is O(g(n))
Solution:

False: Counter example: f(n)=n2 & g(n)=n; f(n) is Ω(g(n)), but f(n) is NOT O(g(n))

3. Find functions f(n) and g(n) such that f(n) is O(g(n)) and the constant c for the definition of
O() must be >1. That is, find f & g such that c must be greater than 1, as there is no sufficient n0
when c=1.
Solution: Basically, you need to think up two functions where one is always greater than the
other and never crosses, but if you multiply one of them by something, there is a crossing point
where they reverse, and it will shoot up past the other function.

Consider
f(n)=n+1
g(n)=n

we know f(n) is O(g(n)); both run in linear time
Yet f(n)>g(n) for all values of n; no n0 we pick will help with this if we set c=1.
Instead, we need to pick c to be something else; say, 2.

n+1 <= 2n for n>=1

4. Write the O() run-time of the functions with the following recurrence relations
a. T(n)=3+T(n-1), where T(0)=1
Solution:

T(n)=3+3+T(n-2)=3+3+3+T(n-3)=…=3k+T(0)=3k+1, where k=n,
so O(n) time.

b. T(n)=3+T(n/2) , where T(1)=1
Solution:

T(n)=3+3+T(n/4)=3+3+3+T(n/8)=…=3k+T(n/2k)
we want n/2k=1 (since we know what T(1) is), so k=log2n
so T(n)=3logn+1, so O(logn) time.

c. T(n)=3+T(n-1)+T(n-1) , where T(0)=1
Solution:

We can re-write T(n) as T(n) = 3+2 T(n-1)
Then to expand T(n)
T(n)
= 3 + 2 (3 + 2 T(n-2))
= 3 + 2(3 + 2 (3 + 2 T (n-3)))
= 3 + 2 (3 + 2 (3 + 2 (3 + 2 T (n-4))))
=3 2

0 3 21 3 22 3 2k1 2kT(0) where k is the number of iterations

= 1223
1

0

k
k

i

i

Because m i

i 0

j

 m j1-1, we can replace the summation with

= 12)12(3 kk

And in this case, since we know that the number of iterations that occur is just n, k=n, and so
= 324 n

and we see that have T(n) = 8 2n , and thus T(n) is in O(2n).

Basically, since we can tell the # of calls to T() is doubling every time we expand it further, it
runs in O(2n) time.

5. Prove by induction that the

n

i
i

0

2 =

First, check the base case. Set n=1, and show that the right-hand side of the equation above is
equal to 0^2 + 1^2.

Second, do the induction step.

1 + 22 + 32 + ... + n2 + (n+1)2

= + (n+1)2

=

=

=

The final expression, on the right, is the same as if we had substituted (n+1) for (n) in the
original equation, and hence we have proven the equation true for the inductive case.

(equation images in the solution to this problem above, courtesy of
http://pirate.shu.edu/~wachsmut/ira/infinity/answers/sm_sq_cb.html)

6. What’s the O() run-time of this code fragment in terms of n:

a)
int x=0;
for(int i=n;i>=0;i--)

if((i%3)==0) break;
else x+=i;

Solution:
At a glance we see a loop and it looks like it should be O(n); it looks like we go through
the loop n times.
However, that ‘break’ makes things a bit weirder. Consider how the loop will work for
any real data; we start at some n, count backwards until the value is a multiple of 3, at
which point we break.
So the loop’s code will run at most 3 times (not a function of n); so the whole thing is
O(1).
**Recall that ‘%’ is the remainder operator; i%3 divides i by 3 and returns the remainder
(which will be 0, 1 or 2).

b) O(3n)

Outer loop is n. Inner loop is
3

2n times. Hence, the whole thing runs in
3

3n time. Dropping the

1/3 constant, we get O(3n)

c) This one is trickier. Outer loop runs in n, but inner loop runs in i*i time. Which means the
first time the inner loop runs, i is only 0, so the inner loop runs 0 times. Next, i is 1, so inner
loop runs 1 time. Next i=2, inner loop hence runs 2i times, which is 4. Next time, i=3, inner loop
goes 9 times. And so forth. So the number of executions ends up being 0 + 1 + 4 + 9 + … + 2n
times. We can use the formula we just found in problem 5 here, to represent this summation,

. And so, this expression is O(3n).

