
CSE 332 Data Abstractions, Winter 2014
Homework 2

Due: Wednesday, January 22, 2014 at the BEGINNING of lecture. Your work should be
readable as well as correct. You should refer to the written homework guidelines on the course
website for a reminder about what is acceptable pseudocode. Please put your SECTION
on your homework.

Problem 1. Binary Min-Heaps

This problem will give you some practice with the basic operations on binary min heaps. You
are welcome to show more intermediate trees or arrays than the numbers listed below if you
like.

(a) Starting with an empty binary min heap, show the result of inserting, in the following
order, 12, 10, 4, 8, 6, 7, 15, 3, 14, 9, and 2, one at a time (using percolate up each time),
into the heap. Be sure to draw the result after every insertion. By show here we mean
draw the resulting binary tree with the values at “each node.” In addition, give the array
representation of your final answer. We expect 11 trees and 1 array as your answer.

(b) Instead of inserting the elements in part (a) into the heap one at a time, suppose that
you use Floyd’s buildheap algorithm. Show the resulting binary min heap tree. (It would
help if you showed the intermediate trees so if there are any bugs in your solution we
will be better able to assign partial credit, but this is not required). In addition, give the
array representation of your final answer. We expect 1 tree and 1 array as your answer.

(c) Now perform TWO deleteMin operations on the binary min heap you constructed in part
(b). Show the binary min heaps that result from these successive deletions (“draw the
resulting binary tree with values at each node”). Be sure to draw the result after every
deletion. In addition, give the array representation of your final answer. We expect 2
trees and 1 array as your answer.

Problem 2. Two Binary Min Heap Algorithms

For both of these problems, for full credit your solution should be the most efficient possible.
Perhaps in the worst case they might need to examine every element in the heap, but in general
this should not be the case. You may assume an array layout of the binary min heap as discussed
in lecture and in the book. You also may assume that your algorithm has direct access to the
heap array (it does not need to manipulate it just by using the standard heap operations insert,
deletemin, findmin, etc.). Your algorithm should not modify the heap (just like a findmin does
not modify the heap) or at the very least, if it does, it should put it back identical to how it
was before you started. Be sure to answer all four parts (a-d) of the question!

(a) Write pseudocode for an efficient algorithm that will find the maximum value in a binary
min heap.

(b) What is the worst case complexity of the algorithm you wrote in part (a)? Give your
answer in big-O.

1



(c) Write pseudocode for an efficient algorithm that will find all values less than a given value
in a binary min heap. Your algorithm should just print out the values it finds. Note that
the “given value” is not necessarily in the heap. We could ask you to find all values less
than 42 in the heap, where the value 42 is not in the heap.

(d) What is the worst case complexity of the algorithm you wrote in part (c)? Give your
answer in big-O. What is the runtime of your algorithm if it finds k values less than the
input value?

Problem 3. d-Heap Arithmetic

Binary heaps implemented using an array have the nice property of finding children and
parents of a node using only multiplication and division by 2 and incrementing by 1. This
arithmetic is often very fast on most computers, especially the multiplication and division by
2 since these correspond to simple bitshift operations. In d-heaps, the arithmetic is also fairly
straightforward, but is no longer necessarily as fast. In this problem you will figure out how the
arithmetic works in those heaps. In case the general idea is not clear, d-Heaps are discussed in
section 6.5 of Weiss.

(a) We will begin with considering a 3-heap (a heap where each node has ≤ 3 children. If a
3-heap is stored as an array, for an entry located at index i, what are the indices of its
parent and its children? You may find it convenient to place the root at index 0 instead
of 1 to simplify calculations (be sure to specify if you make this change).

Hint: the solution should be very concise. If it is becoming complicated, you might want
to rethink your approach.

(b) Generalize your solution from (a) to work for d-heaps in general. If a d-heap is stored
as an array, for an entry located at index i, what are the indices of its parent and its
children?

(c) For what values of d will these operations be implementable with bit shifts instead of
divisions and multiplications?

(d) If a d-heap has height h, what is the maximum number of nodes that it can contain?
What is the mininum? (again, give an exact expression, NOT something in big-O or
theta etc.) SHOW how you came up with your answer.

(e) If a d-heap has n nodes, what will its height be? (give an exact expression, not something
in big O or theta etc.) SHOW how you came up with your answer.

2


