
Name: UW NetID:

CSE332 Summer 2012 Final Exam, August 15, 2012

Please do not turn the page until the bell rings.

Rules:

– The exam is closed-book and limited-note. You are permitted a single, handwritten 3x5 index card of
notes. You must turn in this card with your exam.

– Calculators are also permitted but not necessary.

– Please stop promptly at 12:20.

– You can rip apart the pages, but please staple them back together before you leave.

– Blank paper for extra room are available upon request.

– This exam contains 9 questions (many with multiple parts). There are 110 points total, but the exam
is worth 100 points, meaning that you may earn some extra points.

Advice:

– The questions are not necessarily in order of difficulty. Read through the entire exam first and then
skip around as you see fit. Make sure you get to all the problems.

– Read questions carefully. Understand a question before you start writing.

– Write down thoughts and intermediate steps to earn partial credit. Circle your final answer.

– If you have questions, ask.

– Relax. You are here to learn.

EXAM SCORE / 100

1

2

This page is for instructor use only

TOTAL SCORE / 100

1. General Knowledge / 18

2. Which Sort is Which? / 10

3. Radix Sort / 12

4. Topological Sorting / 12

5. Dijkstra’s Shortest Path / 10

6. Minimum Spanning Tree / 14

7. Parallel Prefix / 12

8. Another Parallel Sort / 12

9. Completing Fork/Join / 10

EC. Make a Funny / 3

3

4

1. (18 pts) General Knowledge
The following questions all refer to ideas involving algorithms, complexity, parallelism, and concurrency.
Provide your answer as indicated.

(a) Which of the following comparison sorts are in-place sorts? Circle all that apply.

SelectionSort InsertionSort HeapSort BucketSort

SequentialQuickSort SequentialMergeSort ParallelQuickSort ParallelMergeSort

(b) A lock that allows a single thread to acquire the lock multiple times is called a(n)

(c) Assume a graph algorithm is Θ(|V | log |V |+ |E|). If a graph is dense, what will the algorithm’s
actual performance be?

(d) What are the average case performances (big-O) for the following sequential sorting algorithms?

SelectionSort

InsertionSort

HeapSort

MergeSort

QuickSort

(e) For a parallel algorithm, its parallelism is O(n) and its work is O(n2 logn). What is the algorithm’s
span?

(f) The time complexity for calculating the degree of a node in an undirected graph represented by an
adjacency matrix is?

(g) In regards to performance, ’s law is an observation and ’s law is a
mathematical theorem.

(h) Using one lock per bucket in a separate chaining hashtable is an example of lock
granularity.

(i) A parallel pack has work and span.

(j) To optimize the amortized efficiency for find in Disjoint Set Union-Find, one needs to implement
both and

(k) No comparison-based sorting algorithm can do better than in the worst-case.

5

6

2. (10 pts) Which Sort is Which?
Each of the following arrays shows a comparison sort in progress. There are five different algorithms:
SelectionSort, InsertionSort, HeapSort, QuickSort, and MergeSort. Your task is to match each
array to the algorithm that would produce such an array during its execution. You must also provide a
short justification for your answer.

(a) 02 04 01 07 09 08 12 19 13 27 25 33 44 35 51 85 98 77 64 56

Sorting Algorithm:

Reason:

(b) 12 25 51 64 77 08 35 09 01 07 04 33 44 19 02 85 98 13 27 56

Sorting Algorithm:

Reason:

(c) 56 51 44 27 13 33 35 25 09 12 04 01 08 19 02 07 64 77 85 98

Sorting Algorithm:

Reason:

(d) 01 02 04 64 12 08 35 09 51 07 77 33 44 19 25 85 98 13 27 56

Sorting Algorithm:

Reason:

(e) 12 25 51 64 77 01 07 08 09 35 04 19 33 44 02 85 98 13 27 56

Sorting Algorithm:

Reason:

7

8

3. (12 pts) Radix Sort
Perform a radix sort of the following list of numbers, using a radix of 10, into ascending order:

329 595 408 15 291 466 7 290 141 53 210 883 107 395 663

Show the bin/bucket sort conducted in each pass of the radix sort using the provided tables. You must
also write down the order of the numbers after each pass.

First Pass

0 1 2 3 4 5 6 7 8 9

Order after first pass:

Second Pass

0 1 2 3 4 5 6 7 8 9

Order after second pass:

Third Pass

0 1 2 3 4 5 6 7 8 9

Order after third pass:

9

10

4. (12 pts) Topological Sorting
You will perform two topological sorts on the
directed graph to the right:

When the processing of a vertex creates
more than one new pending vertex, add the
new pending vertices to your set of pending
vertices in alphabetical order (e.g., push(X),
push(Y), push(Z)).

For each topological sort, use the provided
tables to compute the topological sort and your final solution. Show your work to allow partial credit
(e.g., show adding and removing from the set).

(a) Perform a topological sort using a queue to maintain the set of pending vertices.

A B C D E F G H I J

In-degree

Queue

Final
Ordering

(b) Perform a topological sort using a stack to maintain the set of pending vertices:

A B C D E F G H I J

In-degree

Stack

Final
Ordering

11

12

5. (10 pts) Dijkstra’s Shortest Path
Consider the following directed, weighted graph:

(a) Use Dijkstra’s algorithm to calculate the single-source shortest paths from vertex A to every other
vertex. Show your steps in the table below. As the algorithm proceeds, cross out old values and
write in new ones, from left to right in each cell. If during your algorithm two unvisited vertices
have the same distance, use alphabetical order to determine which one is selected first. Also list the
vertices in the order which Dijkstras algorithm marks them known:

Order vertices marked as known:

Vertex Known Distance Path

A

B

C

D

E

F

G

H

(b) What is the lowest-cost path from A to H in the graph, as computed above?

13

14

6. (14 pts) Minimum Spanning Tree
You will be computing two minimum spanning trees for the following undirected, weighted graph.

(a) Step through Prim’s algorithm to calculate a minimum spanning tree starting from vertex A.
Show your steps in the table below. As the algorithm proceeds, cross out old values and write in
new ones, from left to right in each cell. If during your algorithm two unvisited vertices have the
same distance, use alphabetical order to determine which one is selected first. Also list the vertices
in the order which Prim’s algorithm marks them known:

Order vertices marked as known:

Vertex Known Distance Path

A

B

C

D

E

F

G

(b) List the edges in the minimum spanning tree as computed above. Please list vertices in edges by
alphabetical order (e.g., A—B and not B—A).

Question 6 continues on back =⇒

15

6. (continued)
For your convenience, here is the graph again.

(c) Step through Kruskal’s algorithm to calculate a minimum spanning tree of the graph. Show your
steps in the table below, including the disjoint sets at each iteration. If you can select two edges
with the same weight, select the edge that would come alphabetically last (e.g., select E—F before
B—C. Also, select A—F before A—B).

Edge Added Edge Cost Running Cost Disjoint Sets

– – 0 (A) (B) (C) (D) (E) (F) (G)

16

7. (12 pts) Parallel Prefix
Simulate the parallel prefix algorithm by filling in the appropriate values in the prefix tree below. The
input array is provided. You will need to determine the output array and the values of range, sum, and
fromLeft in the tree’s nodes.

17

18

8. (12 pts) Another Parallel Sort
In addition to QuickSort and MergeSort, SelectionSort can also be made parallel.

(a) Provide a pseudocode description of how you would implement ParallelSelectionSort. Hint: Your
solution need not be complex and should take advantage of parallel algorithms covered in class.

(b) What is the work for your algorithm?

(c) What is the span for your algorithm?

(d) What is the parallelism for your algorithm?

(e) Is this a significant speed-up? Why or why not?

(f) Does this suggest that ParallelSelectionSort is a good algorithm to implement? Why or why not?

19

20

9. (10 pts) Completing Fork/Join Code
The following is partial ForkJoin code. Take a moment to briefly read through it.

class TwoSmallestDistinct {
static final ForkJoinPool fjPool = new ForkJoinPool();

TwoSmallestDistinctResult doParallel(int[] array) {
TwoSmallestDistinctTask task =

new TwoSmallestDistinctTask(array, 0, array.length);

return fjPool.invoke(task);
}

}

class TwoSmallestDistinctResult {
//Three possible pairings for minOne and minTwo:
//i. minOne == minTwo == -1, or
//ii. minOne > 0 and minTwo == -1, or
//iii. 0 < minOne < minTwo
int minOne, minTwo;

TwoSmallestDistinctResult() {
minOne = -1; minTwo = -1;

}
}

class TwoSmallestDistinctTask extends RecursiveTask<TwoSmallestDistinctResult> {
int[] array;
int low, high; // array indices

TwoSmallestDistinctTask(...) { // Constructor that stores these three fields }

TwoSmallestDistinctResult compute() { // FOR YOU TO WRITE }

private int[] FastFourSort(int a, int b, int c, int d)
{ // O(1) helper method that returns array of four values in ascending order}

}

This code takes an array of positive numbers and determines the two smallest DISTINCT values in the
array. If the array contains all duplicates, then the second value is stored as -1.

Examples: if arr is {12, 37, 64, 29, 18, 27, 8, 17, 13}, then minOne = 8 and minTwo = 13
if arr is {12, 12, 12, 12, 12, ..., 12}, then minOne = 12 and minTwo = -1

You need to complete the TwoSmallestDistinctTask class using the Java ForkJoin library. We have
provided the member declarations and the constructor, so you only need to implement compute(). Do
not use a sequential cutoff; your code should be able to handle two base cases: the sub-array contains
either 1 or 2 elements. Your implementation should also minimize the number of threads produced and
perform with O(n) work and O(logn) span. You may find the provided FastFourSort method helpful in
simplifying your code. Be sure that your code ensures that minOne and minTwo are distinct.

Answer question 9 on back or on a separate sheet of paper =⇒

21

9. (continued)

22

Extra Credit: Make a Funny
Write or draw something funny. Any G-rated joke will be considered. Possible lead-ins include:

Why did the professor go to Spokane? So I was coding Project 2 at 3am, when...

A stack and a queue walk into a bar... Your code is so parallel, it...

The best responses in the class may earn up to 3 points.

23

