CSE 332: Data Abstractions

Lecture 23:

Data Races and Memory Reordering
Deadlock
Readers/Writer Locks
Condition Variables

Ruth Anderson
Winter 2013

Announcements

« Homework 7 — due Friday March 8" at the BEGINNING of
lecture!

* Project 3 —the last programming project!
— ALL Code - Tues March 12, 2011 11PM - (65% of overall grade):
— Writeup - Thursday March 14, 2011, 11PM - (25% of overall grade)

Outline

Done:
* Programming with locks and critical sections
« Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

 Why you must avoid data races (memory reorderings)

« Another common error: Deadlock

« Other common facilities useful for shared-memory concurrency
— Readers/writer locks
— Condition variables, or, more generally, passive waiting

3/06/2013

Motivating memory-model issues

Tricky and surprisingly wrong unsynchronized concurrent code

class C {
private int x = 0;
private int y = 0;

First understand why it looks like
the assertion cannot fail:

void £() { « Easy case: call to g ends before
x =1; any call to £ starts
y = 1;

} .

void g() { Easy case: at least one call to £

e o = completes before call to g starts

int b = x;
assert(b >= a); « If calls to £ and g interleave...
}
}

3/06/2013 4

Interleavings

There is no interleaving of £ and g where the assertion fails

— Proof #1: Exhaustively consider all possible orderings of
access to shared memory (there are 6)
— Proof #2: If ! (b>=a), then a==1 and b==0.
But if a==1, then y=1 happened before a=y.
Because programs execute in order:
a=y happened before b=x and x=1 happened before y=1.
So by transitivity, b==1. Contradiction.

Thread 1. £ Thread 2. g

x =1; int a = y;
y*l;/ int k*= X;

assert(b >= a);

3/06/2013

Wrong

However, the code has a data race
— Two actually

— Recall: data race: unsynchronized read/write or write/write of
same location

If code has data races, you cannot reason about it with interleavings!
— That is simply the rules of Java (and C, C++, C#, ...)

— (Else would slow down all programs just to “help” programs with
data races, and that was deemed a bad engineering trade-off
when designing the languages/compilers/hardware)

— So the assertion can fall

Recall Guideline #0: No data races

3/06/2013 6

Why

For performance reasons, the compiler and the hardware often
reorder memory operations

— Take a compiler or computer architecture course to learn why

Thread 1: £ Thread 2: g
x =1; int a = y;
y = 1; int b = x;

assert (b >= a);

Of course, you cannot just let them reorder anything they want
« Each thread executes in order after all!
« Consider: x=17; y=x;

3/06/2013 7

The grand compromise

The compiler/hardware will never perform a memory reordering that
affects the result of a single-threaded program

The compiler/hardware will never perform a memory reordering that
affects the result of a data-race-free multi-threaded program

So: If no interleaving of your program has a data race, then you can
forget about all this reordering nonsense: the result will be
equivalent to some interleaving

Your job: Avoid data races
Compiler/hardware job: Give illusion of interleaving if you do your job

3/06/2013 8

Fixing our example

« Naturally, we can use synchronization to avoid data races
— Then, indeed, the assertion cannot fall

class C {
private int x = 0;
private int y 0;
void £() {

synchronized(this) { x = 1; }
synchronized(this) { y = 1; }
}
void g () {
int a, b;
synchronized(this) { a = y; }
synchronized(this) { b = x; }

assert(b >= a);

}

3/06/2013

A second fix

« Java has volatile fields: accesses do not count as data races
« Implementation: slower than regular fields, faster than locks
« Really for experts: avoid them; use standard libraries instead

« And why do you need code like this anyway?

class C {
private volatile int x
private volatile int y
void £ () {
x =1;
y = 1;

I
o

}
void g() {

int a = y;
int b = x;
assert(b >= a);
}
}

3/06/2013 10

Code that is wrong

 Here is a more realistic example of code that is wrong
— No guarantee Thread 2 will ever stop (there’s a data race)
— But honestly it will “likely work in practice”

class C {
boolean stop = false;
void £() {
while (!stop) {
// draw a monster

Thread 1: £ ()

Thread 2: g()

}
}
void g () {

stop = didUserQuit() ;
}

}

3/06/2013 11

Outline

Done:
* Programming with locks and critical sections
« Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

 Why you must avoid data races (memory reorderings)

« Another common error: Deadlock

« Other common facilities useful for shared-memory concurrency
— Readers/writer locks
— Condition variables

3/06/2013 12

Motivating Deadlock Issues

Consider a method to transfer money between bank accounts

class BankAccount {

synchronized void withdraw(int amt) {..}
synchronized void deposit(int amt) {..}
synchronized void transferTo(int amt,
BankAccount a) {
this.withdraw (amt) ;
a.deposit (amt) ;

}

Potential problems?

3/06/2013

13

Motivating Deadlock Issues

Consider a method to transfer money between bank accounts

class BankAccount {

synchronized void withdraw(int amt) {..}
synchronized void deposit(int amt) {..}
synchronized void transferTo(int amt,
BankAccount a) {
this.withdraw (amt) ;
a.deposit (amt) ;

}

Notice during call to a.deposit, thread holds two locks
— Need to investigate when this may be a problem

3/06/2013

14

The Deadlock

Suppose x and y are static fields holding accounts

Thread 1: x. transferTo(1,y) Thread2:y.transferTo(1,x)

acquire lock for x

do withdraw from x
acquire lock for y
do withdraw from y

Time

block on lock for x
block on lock for y

3/06/2013 15

Ex: The Dining Philosophers

5 philosophers go out to dinner together at an Italian restaurant
Sit at a round table; one fork per setting

When the spaghetti comes, each philosopher proceeds to grab their
right fork, then their left fork, then eats

‘Locking’ for each fork results in a deadlock

3/06/2013 16

Deadlock, in general

A deadlock occurs when there are threads T1, ..., Tn such that:
 Fori=1,..,n-1, Ti is waiting for a resource held by T(i+1)
« Tnis waiting for a resource held by T1

In other words, there is a cycle of waiting
— Can formalize as a graph of dependencies with cycles bad

Deadlock avoidance in programming amounts to techniques to
ensure a cycle can never arise

3/06/2013 17

Back to our example

Options for deadlock-proof transfer:

1. Make a smaller critical section: transferTo not synchronized
— Exposes intermediate state after withdraw before deposit
— May be okay here, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for all accounts allowing
transfers between them

— Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unigue number and always acquire
locks in the same order

— Entire program should obey this order to avoid cycles
— Code acquiring only one lock can ignore the order

3/06/2013 18

Ordering locks

class BankAccount {

private int acctNumber; // must be unique
void transferTo(int amt, BankAccount a) {
if (this.acctNumber < a.acctNumber)
synchronized (this) {
synchronized(a) ({
this.withdraw (amt) ;
a.deposit(amt) ;
}}
else
synchronized(a) ({
synchronized (this) {
this.withdraw (amt) ;
a.deposit(amt) ;
}}
}

3/06/2013

19

Another example

From the Java standard library

class StringBuffer {
private int count;
private char|[] wvalue;

synchronized append(StringBuffer sb) {
int len = sb.length()
if (this.count + len > this.value.length)
this.expand(..) ;
sb.getChars (0,len,this.value, this.count) ;
}
synchronized getChars(int x, int, vy,
char[] a, int z) {
“copy this.value[x..y] into a starting at z”

}

3/06/2013 20

Two problems

Problem #1: Lock for sb is not held between calls to sb.length
and sb.getChars

— So sb could get longer
— Would cause append to throw an ArrayBoundsException

Problem #2: Deadlock potential if two threads try to append in
opposite directions, just like in the bank-account first example

Not easy to fix both problems without extra copying:
— Do not want unique ids on every StringBuffer
— Do not want one lock for all StringBuffer objects

Actual Java library: fixed neither (left code as is; changed javadoc)
— Up to clients to avoid such situations with own protocols

3/06/2013 21

Perspective

« Code like account-transfer and string-buffer append are difficult
to deal with for deadlock

« Easier case: different types of objects
— Can document a fixed order among types

— Example: “When moving an item from the hashtable to the
work queue, never try to acquire the queue lock while
holding the hashtable lock”

» Easier case: objects are in an acyclic structure
— Can use the data structure to determine a fixed order

— Example: “If holding a tree node’s lock, do not acquire other
tree nodes’ locks unless they are children in the tree”

3/06/2013 22

Outline

Done:
* Programming with locks and critical sections
« Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

 Why you must avoid data races (memory reorderings)

« Another common error: Deadlock

« Other common facilities useful for shared-memory concurrency
— Readers/writer locks
— Condition variables

3/06/2013 23

Reading vs. writing

Recall:
— Multiple concurrent reads of same memory: Not a problem
— Multiple concurrent writes of same memory: Problem
— Multiple concurrent read & write of same memory: Problem

So far:

— If concurrent write/write or read/write might occur, use
synchronization to ensure one-thread-at-a-time

But this is unnecessarily conservative:
— Could still allow multiple simultaneous readers!

3/06/2013 24

Example

Consider a hashtable with one coarse-grained lock
— So only one thread can perform operations at a time

— Won't allow simultaneous reads, even though it's ok
conceptually

But suppose:
— There are many simultaneous lookup operations

— insert operations are very rare

— It'd be nice to support multiple reads; we’'d do lots of waiting
otherwise

Note: Important that 1lookup does not actually mutate shared
memory, like a move-to-front list operation would

3/06/2013 25

Readers/writer locks

A new synchronization ADT: The readers/writer lock

- A Io“ck S stat?s fall into three categories: 0<writers <1
— “not held O <readers
— “held for writing” by one thread writers*readers==

— “held for reading” by one or more threads

« new: make a new lock, initially “not held”

« acquire write: block if currently “held for reading” or “held for
writing”, else make “held for writing”

* release write: make “not held”

- acquire read: block if currently “held for writing”, else
make/keep “held for reading” and increment readers count

« release read: decrementreaders count, if 0, make “not held”

3/06/2013 26

Pseudocode example (not Java)
class Hashtable<K,V> {

// coarse-grained, one lock for table
RWLock lk = new RWLock() ;
V lookup (K key) {
int bucket = hasher (key) ;
lk.acquire read();
. read array[bucket] ..
lk.release read();

}
void insert (K key, V val) {

int bucket = hasher (key) ;
lk.acquire write();

. write array[bucket] ..
lk.release write();

}
}

3/06/2013

27

Readers/writer lock detalls

A readers/writer lock implementation (“not our problem?”) usually
gives priority to writers:
— Once a writer blocks, no readers arriving later will get the
lock before the writer

— Otherwise an insert could starve

« That s, it could wait indefinitely because of continuous
stream of read requests

Re-entrant?
— Mostly an orthogonal issue
— But some libraries support upgrading from reader to writer

Why not use readers/writer locks with more fine-grained locking,
like on each bucket?

— Not wrong, but likely not worth it due to low contention

3/06/2013 28

In Java

Java’'s synchronized statement does not support readers/writer

Instead, library

java.util.concurrent.locks.ReentrantReadWriteLock

» Different interface: methods readLock and writeLock return
objects that themselves have 1lock and unlock methods

« Does not have writer priority or reader-to-writer upgrading
— Always read the documentation

3/06/2013 29

Outline

Done:
* Programming with locks and critical sections
« Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

 Why you must avoid data races (memory reorderings)

« Another common error: Deadlock

« Other common facilities useful for shared-memory concurrency
— Readers/writer locks
— Condition variables

3/06/2013 30

Motivating Condition Variables:
Producers and Consumers

Another means of allowing concurrent access is the condition
variable; before we get into that though, lets look at a situation
where we’d need one:

* Imagine we have several producer threads and several
consumer threads

— Producers do work, toss their results into a buffer

— Consumers take results off of buffer as they come and
process them

— EXx: Multi-step computation

producer(s) buffer fle|d % consumer(s)
4

enqueue s 4 baclI i *+,n dequeue

| | |

| | — — |

| | — — |

3/06/2013 31

Motivating Condition Variables:

Producers and Consumers

« Cooking analogy: Team one peels potatoes, team two

takes those and slices them up

— When a member of team one finishes peeling, they toss the
potato into a tub

— Members of team two pull potatoes out of the tub and dice

them up
producer(s) buffer djc consumer(s)
A~ Y pack frontT “ea, g dequeue
= \[= == == [
— — — — —
— — — — —

3/06/2013

Motivating Condition Variables:
Producers and Consumers

producer(s) buffer fle|d (T: consumer(s)
8

enqueue s 4 baclI i *+,n dequeue

| | |

| | — — |

| | — — |

 If the buffer is empty, consumers have to wait for producers
to produce more data

 If buffer gets full, producers have to wait for consumers to
consume some data and clear space

We'll need to synchronize access; why?
— Data race; simultaneous read/write or write/write to back/front

3/06/2013 33

Motivating Condition Variables

producer(s) buffer fle|d (T: consumer(s)
8

enqueue s 4 baclI i *+,n dequeue

| | |

| | — — |

| | — — |

To motivate condition variables, consider the canonical example of a
bounded buffer for sharing work among threads

Bounded buffer: A queue with a fixed size
— (Unbounded still needs a condition variable, but 1 instead of 2)

For sharing work — think an assembly line:
— Producer thread(s) do some work and enqueue result objects
— Consumer thread(s) dequeue objects and do next stage
— Must synchronize access to the queue

3/06/2013 34

Code, attempt 1

class Buffer<iE> {
E[] array = (E[])new Object[SIZE];
.. // front, back fields, isEmpty, isFull methods
synchronized void enqueue(E elt) {
if(isFull())
27?7
else
. add to array and adjust back ..
}
synchronized E dequeue ()
if (isEmpty())
2?7
else
. take from array and adjust front ..

}

3/06/2013 35

class Buffer<ikE> {
E[] array = (E[])new Object[SIZE];
.. // front, back fields, isEmpty, isFull methods

F”"S't synchronized void enqueue (E elt) ({
if (1isFull())

attempt 222
else

. add to array and adjust back ..

}
synchronized E dequeue () {

if (isEmpty())
2?7

else
. take from array and adjust front ..

}

« What to do for 22?2 One approach; if buffer is full on enqueue, or
empty on dequeue, throw an exception

— Not what we want here; w/ multiple threads taking & giving, these
will be common occurrences — should not handle like errors

— Common, and only temporary; will only be empty/full briefly
— Instead, we want threads to be pause until it can proceed
3/06/2013 36

Waiting

« enqueue to a full buffer should not raise an exception
— Wait until there is room

« dequeue from an empty buffer should not raise an exception
— Wait until there is data

Bad approach is to spin (wasted work and keep grabbing lock)

void enqueue (E elt) ({
while (true) {
synchronized (this) {
i1f(isFull()) continue;
. add to array and adjust back ..
return;

b}

// dequeue similar

3/06/2013 37

What we want

» Better would be for a thread to wait until it can proceed

Be notified when it should try again
Thread suspended until then; in meantime, other threads run

While waiting, lock is released; will be re-acquired later by one
notified thread

Upon being notified, thread just drops in to see what condition it's
condition is in

Team two members work on something else until they're told more
potatoes are ready

Less contention for lock, and time waiting spent more efficiently

386/2013

Condition Variables

» Like locks & threads, not something you can implement on your own
— Language or library gives it to you
« An ADT that supports this: condition variable

— Informs waiting thread(s) when the condition that causes it/them
to wait has varied

« Terminology not completely standard; will mostly stick with Java

306/2013

Java approach: not quite right

class Buffer<iE> {

synchronized void enqueue (E elt) {
if (isFull())
this.wait(); // releases lock and waits
add to array and adjust back
if (buffer was empty)
this.notify(); // wake somebody up
}
synchronized E dequeue() {
if (isEmpty ())
this.wait(); // releases lock and waits
take from array and adjust front
if (buffer was full)
this.notify(); // wake somebody up

}
}

3/06/2013

40

Key ideas

« Java weirdness: every object “is” a condition variable (and a lock)
— other languages/libraries often make them separate

e wait:
— “register” running thread as interested in being woken up
— then atomically: release the lock and block
— when execution resumes, thread again holds the lock

e notify:
— pick one waiting thread and wake it up

— no guarantee woken up thread runs next, just that it is no
longer blocked on the condition — now waiting for the lock

— iIf no thread is waiting, then do nothing

3/06/2013 41

Time

Bug #1

synchronized void enqueue (E elt) {
if (isFull())
this.wait () ;
add to array and adjust back

}

Between the time a thread is notified and it re-acquires the lock, the
condition can become false again!

Thread 1 (enqueue) Thread 2 (dequeue) Thread 3 (enqueue)
if (isFull())
this.wait () ;
take from array

if (was full)
this.notify() ;

make full again

add to array

3/06/2013 42

Bug fix #1

synchronized void enqueue(E elt) {
while (isFull())
this.wait () ;

}
synchronized E dequeue() {
while (isEmpty ())
this.wait() ;

Guideline: Always re-check the condition after re-gaining the lock
— If condition still not met, go back to waiting

— In fact, for obscure reasons, Java is technically allowed to
notify a thread spuriously (i.e., for no reason)

3/06/2013 43

Time

Bug #2

« If multiple threads are waiting, we wake up only one
— Sure only one can do work now, but can’t forget the others!

— Works for the most part, but what if 2 are waiting to engueue, and
two quick dequeues occur before either gets to go?

— We'd only notify once; other thread would wait forever

Thread 1 (enqueue) Thread 2 (enqueue) Thread 3 (dequeues)
while (isFull()) while(isFull())
this.wait () ; this.wait () ;
// dequeue #1
if (buffer was full)
this.notify () ;

// dequeue #2

if (buffer was full)
this.notify () ;

3/06/2013 44

Bug fix #2

synchronized void enqueue (E elt) {

if (buffer was empty)
this.notifyAll(); // wake everybody up

}
synchronized E dequeue() {

if (buffer was full)
this.notifyAll(); // wake everybody up

}

notifyAll wakes up all current waiters on the condition variable

Guideline: If in any doubt, use notifyAll
— Wasteful waking is better than never waking up

S0 why does notify exist?

— Well, it is faster when correct...
3/06/2013 45

Alternate approach

* An alternative is to call notify (not notifyAll) on every
enqueue / dequeue, not just when the buffer was empty / full

— Easy: just remove the if statement

« Alas, makes our code subtly wrong since it is technically possible
that an enqueue and a dequeue are both waiting

— See notes for the step-by-step details of how this can happen

* Works fine if buffer is unbounded since then only dequeuers wait

3/06/2013 46

Alternate approach fixed

« The alternate approach works if the enqueuers and dequeuers
wait on different condition variables

— But for mutual exclusion both condition variables must be
associated with the same lock

« Java's “everything is a lock / condition variable” does not
support this: each condition variable is associated with itself

* Instead, Java has classes in java.util.concurrent.locks
for when you want multiple conditions with one lock

— class ReentrantLock has a method newCondition
that returns a new Condition object associate with the lock

— See the documentation if curious

3/06/2013 47

| ast condition-variable comments

« notify/notifyAll often called signal/broadcast, also
called pulse/pulseAll

e Condition variables are subtle and harder to use than locks

« But when you need them, you need them
— Spinning and other work-arounds do not work well

« Fortunately, like most things in a data-structures course, the
common use-cases are provided in libraries written by experts

— Example:
java.util.concurrent.ArrayBlockingQueue<E>

— All uses of condition variables hidden in the library; client just
calls put and take

3/06/2013 48

Concurrency summary

» Access to shared resources introduces new kinds of bugs
— Data races
— Critical sections too small
— Critical sections use wrong locks
— Deadlocks

* Requires synchronization
— Locks for mutual exclusion (common, various flavors)
— Condition variables for signaling others (less common)

« Guidelines for correct use help avoid common pitfalls

* Not clear shared-memory is worth the pain
— But other models (e.g., message passing) not a panacea

3/06/2013 49

