
CSE 332: Data Abstractions 
 

Lecture 20: Shared-Memory Concurrency & 

Mutual Exclusion 

Ruth Anderson 

Winter 2013 



Announcements 

• Homework 6 – due NOW 

• Homework 7 – due Friday March 8 at the BEGINNING of lecture 

 

 

• Project 3 – the last programming project! 

– Version 1 & 2 - Tues March 5, 2013 11PM  

– ALL Code - Tues March 12, 2013 11PM 

– Writeup - Thursday March 14, 2013 11PM  

  

 

 

 

 

2 



Toward sharing resources (memory) 

So far, we have been studying parallel algorithms using fork-join model 

– Reduce span via parallel tasks 

 

Fork-Join algorithms all had a very simple structure to avoid race conditions 

– Each thread had memory “only it accessed” 

• Example: each array sub-range accessed by only one thread 

– Result of forked process not accessed until after join() called 

– So the structure (mostly) ensured that bad simultaneous access 

wouldn’t occur 

 

Strategy won’t work well when: 

– Memory accessed by threads is overlapping or unpredictable 

– Threads are doing independent tasks needing access to same 

resources (rather than implementing the same algorithm) 

 3 3/01/2013 



Each thread accesses a different sub-range of 

the array: Array is shared, but no overlap 
class SumArray extends RecursiveTask<Integer> { 
  int lo; int hi; int[] arr;//fields to know what to do 
  SumArray(int[] a, int l, int h) { … } 
  protected Integer compute(){// return answer 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 
      int ans = 0; 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
      return ans; 
    } else { 
      SumArray left = new SumArray(arr,lo,(hi+lo)/2); 
      SumArray right= new SumArray(arr,(hi+lo)/2,hi); 
      left.fork(); 
      int rightAns = right.compute(); 
      int leftAns  = left.join();  
      return leftAns + rightAns; 
    } 
  } 
} 
static final ForkJoinPool fjPool = new ForkJoinPool(); 
int sum(int[] arr){ 
  return fjPool.invoke(new SumArray(arr,0,arr.length)); 
} 

3/01/2013 4 



Really sharing memory between Threads  

Heap for all objects  

and static fields, shared 

by all threads 
2 Threads, each with own unshared  

call stack and “program counter”  

pc=0x… 

…
 

pc=0x… 

…
 

3/01/2013 5 



Sharing a Queue…. 

• Imagine 2 threads, running at the same time,  

• both with access to a shared linked-list based queue (initially empty) 

enqueue(x) { 

 if(back==null){ 

  back=new Node(x); 

  front=back; 

 } 

 else{ 

  back.next = new Node(x); 

   back = back.next; 

  } 

} 

3/01/2013 6 



Sharing a Queue…. 
• Imagine 2 threads, running at the 

same time, both with access to a 

shared linked-list based queue 

(initially empty) 

enqueue(x) { 

 if(back==null){ 

  back=new Node(x); 

  front=back; 

 } 

 else{ 

  back.next = new Node(x); 

   back = back.next; 

  } 

} 

 Each thread has own program counter (and local stack) 

 Queue is shared, so both threads indirectly use the same ‘front’ 
and ‘back’ (which is the whole point of sharing the queue) 

 We have no guarantee what happens first between different 
threads; can (and will) arbitrarily ‘interrupt’ each other 

 Many things can go wrong: say, one tries to enqueue “a”, the other 
“b”, and both verify that back is ‘null’ before other sets back 

 Result: One assignment of back will be ‘forgotten’ 

 In general, any ‘interleaving’ of results is possible if enqueue were 
called at the same time for both 

3/01/2013 7 



Concurrent Programming 

Concurrency: Correctly and efficiently managing access to shared 

resources from multiple possibly-simultaneous clients 
 

Requires coordination, particularly synchronization to avoid incorrect 

simultaneous access: make somebody block (wait) until the resource 

is free 

– join is not what we want 

– Want to block until another thread is “done using what we need” 

not “completely done executing” 
 

Even correct concurrent applications are usually highly non-deterministic 

– how threads are scheduled affects what operations happen first  

– non-repeatability complicates testing and debugging 

8 3/01/2013 



Concurrency Examples 

What if we have multiple threads: 

 

1. Processing different bank-account operations 

– What if 2 threads change the same account at the same time? 

 

2. Using a shared cache (e.g., hashtable)  of recent files  

– What if 2 threads insert the same file at the same time? 

 

3. Creating a pipeline (think assembly line) with a queue for handing 

work to next thread in sequence? 

– What if enqueuer and dequeuer adjust a circular array queue 

at the same time? 

9 3/01/2013 



Why threads? 

Unlike parallelism, not about implementing algorithms faster 

 

But threads still useful for: 
 

• Code structure for responsiveness 

– Example: Respond to GUI events in one thread while 

another thread is performing an expensive computation 
 

• Processor utilization (mask I/O latency) 

– If 1 thread “goes to disk,” have something else to do 
 

• Failure isolation 

– Convenient structure if want to interleave multiple tasks and 

do not want an exception in one to stop the other 

 
10 3/01/2013 



Sharing, again 

It is common in concurrent programs that: 

 

• Different threads might access the same resources in an 

unpredictable order or even at about the same time 

 

• Program correctness requires that simultaneous access be 

prevented using synchronization 

 

• Simultaneous access is rare 

– Makes testing difficult 

– Must be much more disciplined when designing / 

implementing a concurrent program 

– Will discuss common idioms known to work 

11 3/01/2013 



Canonical example 

Correct code in a single-threaded world 

12 

class BankAccount { 

  private int balance = 0; 

  int  getBalance()      { return balance; } 

  void setBalance(int x) { balance = x; }  

  void withdraw(int amount) { 

    int b = getBalance(); 

    if(amount > b) 

      throw new WithdrawTooLargeException(); 

    setBalance(b – amount); 

  } 

  … // other operations like deposit, etc. 

} 

3/01/2013 



Interleaving 

Suppose: 

– Thread T1 calls x.withdraw(100) 

– Thread T2 calls y.withdraw(100) 

 

If second call starts before first finishes, we say the calls interleave 

– Could happen even with one processor since a thread can 

be pre-empted at any point for time-slicing 

• e.g. T1 runs for 50 ms, pauses somewhere, T2 picks up 

for 50ms 

 

If x and y refer to different accounts, no problem 

– “You cook in your kitchen while I cook in mine” 

– But if x and y alias, possible trouble… 

13 3/01/2013 



What is the balance at the end? 

Two threads both trying to withdraw(25) from the same account: 

• Assume initial balance 100 

class BankAccount { 

  private int balance = 0; 

  int  getBalance()      { return balance; } 

  void setBalance(int x) { balance = x; }  

  void withdraw(int amount) { 

    int b = getBalance(); 

    if(amount > b) 

      throw new WithdrawTooLargeException(); 

    setBalance(b – amount); 

  } 

  … // other operations like deposit, etc. 

} 

x.withdraw(25); 

 

 

Thread 1 

x.withdraw(25); 

 

 

Thread 2 

3/01/2013 14 



A bad interleaving 
Interleaved withdraw(100) calls on the same account 

– Assume initial balance == 150 

– This should cause a WithdrawTooLarge exception 

 

15 

int b = getBalance(); 

 

 

 

 

if(amount > b) 

  throw new …; 

setBalance(b – amount); 

 

int b = getBalance(); 

if(amount > b) 

  throw new …; 

setBalance(b – amount); 

Thread 1 Thread 2 

T
im

e
 

3/01/2013 



A bad fix, Another bad interleaving 
Two threads both trying to withdraw(100) from the same account: 

• Assume initial balance 150 

• This should cause a WithdrawTooLarge exception 

 

 

int b = getBalance(); 

if(amount > getBalance()) 

  throw new …; 

setBalance(b – amount); 

Thread 1 Thread 2 

T
im

e
 

int b = getBalance(); 

 

 

 

 

if(amount > getBalance()) 

  throw new …; 

setBalance(b – amount); 

3/01/2013 16 



Still a bad fix, Another bad interleaving 
Two threads both trying to withdraw(100) from the same account: 

• Assume initial balance 150 

• This should cause a WithdrawTooLarge exception 

 

 

int b = getBalance(); 

if(amount > getBalance()) 

  throw new …; 

 

setBalance(getBalance() – 
       amount); 

Thread 1 Thread 2 

T
im

e
 

int b = getBalance(); 

 

 

 

 

if(amount > getBalance()) 

  throw new …; 

setBalance(getBalance() – 
       amount); 

In all 3 of these examples, 

instead of an exception, 

we have a “Lost withdraw” 3/01/2013 17 



Incorrect “fix” 

It is tempting and almost always wrong to fix a bad interleaving by 

rearranging or repeating operations, such as: 

18 

void withdraw(int amount) { 

  if(amount > getBalance()) 

    throw new WithdrawTooLargeException(); 

  // maybe balance changed 

  setBalance(getBalance() – amount); 

} 

This fixes nothing! 

• Narrows the problem by one statement 

• (Not even that since the compiler could turn it back into the 

old version because you didn’t indicate need to synchronize) 

• And now a negative balance is possible – why? 

3/01/2013 



Mutual exclusion 

The fix: Allow at most one thread to withdraw from account A at a time 

– Exclude other simultaneous operations on A too (e.g., deposit) 

 

Called mutual exclusion: One thread using a resource (here: an 

account) means another thread must wait 

– a.k.a. critical sections, areas of code that are mutually exclusive, 

(which technically have other requirements) 

 

Programmer (you!) must implement critical sections 

– “The compiler” has no idea what interleavings should or should 

not be allowed in your program 

– Buy you need language primitives to do it! 

19 3/01/2013 



Why is this Wrong? 
Why can’t we implement our own mutual-exclusion protocol? 

– Say we tried to coordinate it ourselves using a boolean variable – “busy” 

– It’s technically possible under certain assumptions, but won’t work in real languages anyway 

 

20 

class BankAccount { 

  private int balance = 0; 

  private boolean busy = false; 

  void withdraw(int amount) { 

    while(busy) { /* “spin-wait” */ } 

    busy = true; 

    int b = getBalance(); 

    if(amount > b) 

      throw new WithdrawTooLargeException(); 

    setBalance(b – amount); 

    busy = false; 

  } 

  // deposit would spin on same boolean 

} 

3/01/2013 



Still just moved the problem! 

while(busy) { } 

 

busy = true; 

 

int b = getBalance(); 

 

 

 

 

if(amount > b) 

  throw new …; 

setBalance(b – amount); 

 

while(busy) { } 

 

busy = true; 

 

int b = getBalance(); 

if(amount > b) 

  throw new …; 

setBalance(b – amount); 

Thread 1 Thread 2 

T
im

e
 

“Lost withdraw” –  

unhappy bank 

Time does elapse between checking ‘busy’ and setting ‘busy’; can 

be interrupted there 

Busy is initially = false 

 

3/01/2013 21 



What we need 
• There are many ways out of this conundrum, but we need help 

from the language 
 

• One basic solution: Locks 

– Still on a conceptual level at the moment, ‘Lock’ is not a Java 

class (though Java’s approach is similar)  
 

• We will define Lock as an ADT with operations: 

– new:   make a new lock, initially “not held” 

– acquire:  blocks if this lock is already currently “held” 

• Once “not held”, makes lock “held” [all at once!] 

• Checking & setting happen together, and cannot be 

interrupted 

• Fixes problem we saw before!! 

– release: makes this lock “not held” 

• If >= 1 threads are blocked on it, exactly 1 will acquire it 

22 3/01/2013 



Why that works 

• A Lock ADT with operations  new, acquire, release 
 

 

• The lock implementation ensures that given simultaneous 

acquires and/or releases, a correct thing will happen 

– Example:  

• If we have two acquires: one will “win” and one will block 
 

 

• How can this be implemented? 

– Need to “check if held and if not make held” “all-at-once” 

– Uses special hardware and O/S support  

• See computer-architecture or operating-systems course 

– In CSE 332, we take this as a primitive and use it 

23 3/01/2013 



Almost-correct pseudocode  

24 

class BankAccount { 

  private int balance = 0; 

  private Lock lk = new Lock(); 

  … 

  void withdraw(int amount) { 

   lk.acquire(); // may block 

    int b = getBalance(); 

    if(amount > b) 

      throw new WithdrawTooLargeException(); 

    setBalance(b – amount); 

    lk.release();  

  } 

  // deposit would also acquire/release lk 

} 

3/01/2013 

Note: ‘Lock’ is not an 

actual Java class 



Some mistakes 

• A lock is a very primitive mechanism 

– Still up to you to use correctly to implement critical sections 
 

• Incorrect: Use different locks for withdraw and deposit 

– Mutual exclusion works only when using same lock 

– balance field is the shared resource being protected 
 

• Poor performance: Use same lock for every bank account 

– No simultaneous operations on different accounts 
 

• Incorrect: Forget to release a lock (blocks other threads forever!) 

– Previous slide is wrong because of the exception possibility! 

   

25 

if(amount > b) { 
  lk.release(); // hard to remember! 
  throw new WithdrawTooLargeException(); 

} 

3/01/2013 



Other operations 

• If withdraw and deposit use the same lock, then 

simultaneous calls to these methods are properly synchronized 

 

• But what about getBalance and setBalance? 

– Assume they are public, which may be reasonable 

 

• If they do not acquire the same lock, then a race between 
setBalance and withdraw could produce a wrong result 

 

• If they do acquire the same lock, then withdraw would block 

forever because it tries to acquire a lock it already has 

26 3/01/2013 



One (not very good) possibility 

Have two versions of setBalance! 

• withdraw calls setBalance1 

     (since it already has the lock) 

• Outside world calls 
setBalance2 

• Could work (if adhered to), but 
not good style; also not very 
convenient 

 

• Alternately, we can modify the 
meaning of the Lock ADT to 
support re-entrant locks 

– Java does this 

– Then just always use 
setBalance2  

int setBalance1(int x) {  

  balance = x;  

} 

int setBalance2(int x) { 

  lk.acquire(); 

  balance = x; 

  lk.release(); 

} 

void withdraw(int amount) { 

  lk.acquire(); 

  … 

  setBalance1(b – amount); 

  lk.release();  

} 

 

3/01/2013 27 



Re-entrant lock idea 

A re-entrant lock (a.k.a. recursive lock) 
 

• The idea:  Once acquired, the lock is held by the Thread, and 
subsequent calls to acquire in that Thread won’t block 

 

• Result: withdraw can acquire the lock, and then call 

setBalance, which can also acquire the lock 

– Because they’re in the same thread & it’s a re-entrant lock, 
the inner acquire won’t block!! 

3/01/2013 28 



Re-entrant lock 

A re-entrant lock (a.k.a. recursive lock) 
 

• “Remembers”  

– the thread (if any) that currently holds it  

– a count  
 

• When the lock goes from not-held to held, the count is set to 0 
 

• If (code running in) the current holder calls acquire : 

– it does not block  

– it increments the count 
 

• On release : 

– if the count is > 0, the count is decremented  

– if the count is 0, the lock becomes not-held 

29 3/01/2013 



Re-entrant locks work 

This simple code works fine 
provided lk is a reentrant lock 

• Okay to call setBalance 

directly 

• Okay to call withdraw 

(won’t block forever) 

  

30 

int setBalance(int x) { 

  lk.acquire(); 

  balance = x; 

  lk.release(); 

} 

 

void withdraw(int amount) { 

  lk.acquire(); 

  … 

  setBalance(b – amount); 

  lk.release();  

} 

3/01/2013 



Java’s Re-entrant Lock 

• java.util.concurrent.locks.ReentrantLock 

• Has methods lock() and unlock()  

• As described above, it is conceptually owned by the Thread, 

and shared within that thread 

• Important to guarantee that lock is always released!!!  

• Recommend something like this: 

  myLock.lock(); 

  try { // method body } 

  finally { myLock.unlock(); } 

• Despite what happens in ‘try’, the code in finally will 

execute afterwards 

3/01/2013 31 



Synchronized: A Java convenience 

Java has built-in support for re-entrant locks 

– You can use the synchronized statement as an 

alternative to declaring a ReentrantLock 

synchronized (expression) { 

  statements 

} 

1. Evaluates expression to an object 

• Every object (but not primitive types) “is a lock” in Java 

2. Acquires the lock, blocking if necessary 

• “If you get past the {, you have the lock” 

3. Releases the lock “at the matching }” 

• Even if control leaves due to throw, return, etc. 

• So impossible to forget to release the lock 

3/01/2013 32 



Java version #1 (correct but can be improved) 

33 

class BankAccount { 

  private int balance = 0; 

  private Object lk = new Object(); 

  int getBalance()  

    { synchronized (lk) { return balance; } } 

  void setBalance(int x)  

    { synchronized (lk) { balance = x; } }  

  void withdraw(int amount) { 

   synchronized (lk) { 

      int b = getBalance(); 

      if(amount > b) 

        throw … 

      setBalance(b – amount); 

    }  

  } 

  // deposit would also use synchronized(lk) 

} 

3/01/2013 



Improving the Java 

• As written, the lock is private 

– Might seem like a good idea 

– But also prevents code in other classes from writing 

operations that synchronize with the account operations 

 

• More idiomatic is to synchronize on this… 

– Also more convenient: no need to have an extra object! 

34 3/01/2013 



Java version #2 

35 

class BankAccount { 

  private int balance = 0; 

  int getBalance()  

    { synchronized (this){ return balance; } } 

  void setBalance(int x)  

    { synchronized (this){ balance = x; } }  

  void withdraw(int amount) { 

   synchronized (this) { 

     int b = getBalance(); 

      if(amount > b) 

        throw … 

      setBalance(b – amount); 

    }  

  } 

  // deposit would also use synchronized(this) 

} 

3/01/2013 



Syntactic sugar 

Version #2 is slightly poor style because there is a shorter way to 

say the same thing: 

 

 Putting synchronized before a method declaration means the 

entire method body is surrounded by  

synchronized(this){…} 

 

Therefore, version #3 (next slide) means exactly the same thing as 

version #2 but is more concise 

 

 

36 3/01/2013 



Java version #3 (final version) 

37 

class BankAccount { 

  private int balance = 0; 

  synchronized int getBalance()  

    { return balance; }  

  synchronized void setBalance(int x)  

    { balance = x; }  

   synchronized void withdraw(int amount) { 

    int b = getBalance(); 

     if(amount > b) 

       throw … 

     setBalance(b – amount); 

  } 

  // deposit would also use synchronized 

} 

3/01/2013 



More Java notes 

• Class java.util.concurrent.locks.ReentrantLock 

works much more like our pseudocode 

– Often use try { … } finally { … } to avoid forgetting 

to release the lock if there’s an exception 

 

• Also library and/or language support for readers/writer locks and 

condition variables (future lecture) 

 

• Java provides many other features and details.  See, for 

example: 

– Chapter 14 of CoreJava, Volume 1 by Horstmann/Cornell 

– Java Concurrency in Practice by Goetz et al 

38 3/01/2013 


