Announcements

• **Project 2** – Phase A due TONIGHT Wed Feb 6\(^{th}\) at 11pm
 – Clarifications posted, check Msg board, email cse332-staff
 – Office Hours today after class
• (No homework due Friday)
• **Midterm** – **Monday Feb 11\(^{th}\)** during lecture, info about midterm has been posted, review in section on Thurs
• **Homework 4** – due Friday Feb 15\(^{th}\) at the BEGINNING of lecture
Today

• Sorting
 – Comparison sorting
 – Beyond comparison sorting
The Big Picture

Simple algorithms: $O(n^2)$
- Insertion sort
- Selection sort
- Shell sort
...

Fancier algorithms: $O(n \log n)$
- Heap sort
- Merge sort
- Quick sort (avg)
...

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$
- Bucket sort
- Radix sort

Handling huge data sets
- External sorting
How fast can we sort?

• Heapsort & mergesort have $O(n \log n)$ worst-case running time

• Quicksort has $O(n \log n)$ average-case running times

• These bounds are all tight, actually $\Theta(n \log n)$

• So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$

 – Instead: *prove* that this is impossible

• *Assuming* our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison
A Different View of Sorting

• Assume we have n elements to sort
 – And for simplicity, none are equal (no duplicates)

• How many *permutations* (possible orderings) of the elements?

• Example, $n=3$,
A Different View of Sorting

• Assume we have n elements to sort
 – And for simplicity, none are equal (no duplicates)

• How many permutations (possible orderings) of the elements?

• Example, $n=3$, six possibilities

 \begin{align*}
 \end{align*}

• In general, n choices for least element, then $n-1$ for next, then $n-2$ for next, …

 \begin{align*}
 &n(n-1)(n-2)\ldots(2)(1) = n! \text{ possible orderings}
 \end{align*}
Describing every comparison sort

• A different way of thinking of sorting is that the sorting algorithm has to “find” the right answer among the n! possible answers
 – Starts “knowing nothing”, “anything is possible”
 – Gains information with each comparison, eliminating some possibilities
 • Intuition: At best, each comparison can eliminate half of the remaining possibilities
 – In the end narrows down to a single possibility
Counting Comparisons

• Don’t know what the algorithm is, but it cannot make progress without doing comparisons
 – Eventually does a first comparison “is $a < b$?"
 – Can use the result to decide what second comparison to do
 – Etc.: comparison k can be chosen based on first $k-1$ results

• Can represent this process as a *decision tree*
 – Nodes contain “set of remaining possibilities”
 – At root, anything is possible; no option eliminated
 – Edges are “answers from a comparison”
 – The algorithm does not actually build the tree; it’s what our *proof* uses to represent “the most the algorithm could know so far” as the algorithm progresses
One Decision Tree for n=3

- The leaves contain all the possible orderings of a, b, c
- A different algorithm would lead to a different tree
Example if $a < c < b$

Possible orders:
- $a < b < c$, $b < c < a$
- $a < c < b$, $c < a < b$
- $b < a < c$, $c < b < a$

Actual order:
- $a < b < c$
- $a < c < b$
- $b < a < c$
- $b < c < a$
- $c < b < a$
- $c < a < b$
What the decision tree tells us

• A binary tree because each comparison has 2 outcomes
 – Perform only comparisons between 2 elements; binary result
 • Ex: Is a<b? Yes or no?
 – We assume no duplicate elements
 – Assume algorithm doesn’t ask redundant questions
• Because any data is possible, any algorithm needs to ask enough questions to produce all \(n! \) answers
 – Each answer is a different leaf
 – So the tree must be big enough to have \(n! \) leaves
 – Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with \(n! \) leaves
 – So no algorithm can have worst-case running time better than the height of a tree with \(n! \) leaves
• Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm’s decision tree
Where are we

Proven: No comparison sort can have worst-case running time better than: the height of a binary tree with $n!$ leaves

- Turns out average-case is same asymptotically
- A comparison sort could be worse than this height, but it cannot be better
- Fine, how tall is a binary tree with $n!$ leaves?

Now: Show that a binary tree with $n!$ leaves has height $\Omega(n \log n)$

- That is, $n \log n$ is the lower bound, the height must be at least this, could be more, (in other words your comparison sorting algorithm could take longer than this, but it won’t be faster)
- Factorial function grows very quickly

Then we’ll conclude that: (Comparison) Sorting is $\Omega (n \log n)$

- This is an amazing computer-science result: proves all the clever programming in the world can’t sort in linear time!
Lower bound on Height

- A binary tree of height \(h \) has **at most** how many leaves?
 \[L \leq \underline{000} \]

- A binary tree with \(L \) leaves has height **at least**:
 \[h \geq \underline{000} \]

- The decision tree has how many leaves: \(\underline{000} \)
- So the decision tree has height:
 \[h \geq \underline{000} \]
Lower bound on Height

• A binary tree of height h has at most how many leaves?

\[L \leq 2^h \]

• A binary tree with L leaves has height at least:

\[h \geq \log_2 L \]

• The decision tree has how many leaves: $N!$

• So the decision tree has height:

\[h \geq \log_2 N! \]
Lower bound on height

• The height of a binary tree with L leaves is at least $\log_2 L$
• So the height of our decision tree, h:

$h \geq \log_2 (n!)$

= $\log_2 (n^*(n-1)*(n-2)\ldots(2)(1))$

= $\log_2 n + \log_2 (n-1) + \ldots + \log_2 1$

$\geq \log_2 n + \log_2 (n-1) + \ldots + \log_2 (n/2)$

$\geq (n/2) \log_2 (n/2)$

each of the $n/2$ terms left is $\geq \log_2 (n/2)$

= $(n/2)(\log_2 n - \log_2 2)$

= $(1/2)n\log_2 n - (1/2)n$

"=“ $\Omega (n \log n)$
The Big Picture

Simple algorithms: $O(n^2)$
- Insertion sort
- Selection sort
- Shell sort
...

Fancier algorithms: $O(n \log n)$
- Heap sort
- Merge sort
- Quick sort (avg)
...

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$
- Bucket sort
- Radix sort

Handling huge data sets
- External sorting

How???
- Change the model – assume more than ‘compare(a,b)’
BucketSort (a.k.a. BinSort)

• If all values to be sorted are known to be integers between 1 and K (or any small range),
 – Create an array of size K, and put each element in its proper bucket (a.k.a. bin)
 – If data is only integers, no need to store more than a count of how many times that bucket has been used
• Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

• Example:
 K=5
 Input: (5,1,3,4,3,2,1,1,5,4,5)
 output:
BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
 - Create an array of size K, and put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a count of how many times that bucket has been used
- Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

- Example:
 - K=5
 - input (5,1,3,4,3,2,1,1,5,4,5)
 - output: 1,1,1,2,3,3,4,4,5,5,5

What is the running time?
Analyzing bucket sort

• Overall: $O(n+K)$
 – Linear in n, but also linear in K
 – $\Omega(n \log n)$ lower bound does not apply because **this is not a comparison sort**

• Good when range, K, is smaller (or not much larger) than n
 – (We don’t spend time doing lots of comparisons of duplicates!)

• Bad when K is much larger than n
 – Wasted space; wasted time during final linear $O(K)$ pass

• For data in addition to integer keys, use list at each bucket
Bucket Sort with Data

- Most real lists aren’t just #’s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end O(1) (keep pointer to last element)

Example: Movie ratings: 1=bad, … 5=excellent

Input =
- 5: Casablanca
- 3: Harry Potter movies
- 1: Rocky V
- 5: Star Wars

Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
This result is stable; Casablanca still before Star Wars

Bucket sort illustrates a more general trick: Imagine a heap for a small range of integer priorities
Radix sort

• Radix = “the base of a number system”
 – Examples will use 10 because we are used to that
 – In implementations use larger numbers
 • For example, for ASCII strings, might use 128
• Idea:
 – Bucket sort on one digit at a time
 • Number of buckets = radix
 • Starting with least significant digit, sort with Bucket Sort
 • Keeping sort stable
 – Do one pass per digit
• Invariant: After k passes, the last k digits are sorted

• Aside: Origins go back to the 1890 U.S. census
Example

Radix = 10

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>3</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td>537</td>
<td>478</td>
<td>38</td>
<td>9</td>
</tr>
</tbody>
</table>

Input: 478
 537
 9
 721
 3
 38
 143
 67

First pass:
1. bucket sort by ones digit
2. Iterate thru and collect into a list
 • List is sorted by first digit

Order now: 721
 3
 143
 537
 67
 478
 38
 9
Example

Radix = 10

Second pass:

stable bucket sort by tens digit

If we chop off the 100’s place, these #s are sorted

Order now:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td>537</td>
<td></td>
<td>478</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>721</td>
<td>537</td>
<td>38</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order was:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td></td>
<td>721</td>
<td></td>
<td></td>
<td></td>
<td>537</td>
<td></td>
<td>478</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td>721</td>
<td>537</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2/06/2013
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>721</td>
<td>537</td>
<td>143</td>
<td></td>
<td>67</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third pass:

- **stable** bucket sort by 100s digit

Order was:

- 3
- 9
- 38
- 67

Order now:

- 3
- 9
- 38
- 67
- 143
- 478
- 537
- 721
- 143
- 478

Only 3 digits: We’re done!
RadixSort

- Input: 126, 328, 636, 341, 416, 131, 328

BucketSort on lsd:

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

BucketSort on next-higher digit:

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

BucketSort on msd:
Analysis of Radix Sort

Performance depends on:

- Input size: \(n \)
- Number of buckets = Radix: \(B \)
 - e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- Number of passes = “Digits”: \(P \)
 - e.g. Ages of people: 3; Phone #: 10; Person’s name: ?

- Work per pass is 1 bucket sort: __________
 - Each pass is a Bucket Sort
- Total work is __________
 - We do ‘P’ passes, each of which is a Bucket Sort
Analysis of Radix Sort

Performance depends on:

- Input size: \(n \)
- Number of buckets = Radix: \(B \)
 - e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- Number of passes = “Digits”: \(P \)
 - e.g. Ages of people: 3; Phone #: 10; Person’s name: ?

- Work per pass is 1 bucket sort: \(O(B+n) \)
 - Each pass is a Bucket Sort
- Total work is \(O(P(B+n)) \)
 - We do ‘P’ passes, each of which is a Bucket Sort
Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not
– Example: Strings of English letters up to length 15
 • Approximate run-time: 15*(52 + n)
 • This is less than $n \log n$ only if $n > 33,000$
 • Of course, cross-over point depends on constant factors of the implementations plus P and B
 – And radix sort can have poor locality properties
 – Not really practical for many classes of keys
 • Strings: Lots of buckets
Recap: Features of Sorting Algorithms

In-place

- Sorted items occupy the same space as the original items. (No copying required, only $O(1)$ extra space if any.)

Stable

- Items in input with the same value end up in the same order as when they began.

Examples:
- Merge Sort - not in place, stable
- Quick Sort - in place, not stable
Sorting massive data: External Sorting

Need sorting algorithms that **minimize disk/tape access** time:

- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access

Basic Idea:

- Load chunk of data into Memory, sort, store this “run” on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)

- Mergesort can leverage multiple disks
- Weiss gives some examples
Sorting Summary

- **Simple \(O(n^2)\) sorts** can be fastest for small \(n\)
 - selection sort, insertion sort (latter linear for mostly-sorted)
 - good for “below a cut-off” to help divide-and-conquer sorts
- **\(O(n \log n)\) sorts**
 - heap sort, in-place but not stable nor parallelizable
 - merge sort, not in place but stable and works as external sort
 - quick sort, in place but not stable and \(O(n^2)\) in worst-case
 - often fastest, but depends on costs of comparisons/copies
- **\(\Omega(n \log n)\)** is worst-case and average lower-bound for sorting by comparisons
- **Non-comparison sorts**
 - Bucket sort good for small number of key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!