CSE 332: Data Abstractions
Lecture 12: Comparison Sorting

Ruth Anderson
Winter 2013
Announcements

- **Project 2** – Phase A due Wed Feb 6th at 11pm
 - Clarifications posted, check Msg board, email cse332-staff
 - Office Hours today, Tues, Wed
- (No homework due Friday)
- **Midterm** – Monday Feb 11th during lecture, info about midterm posted soon
- **Homework 4** – due Friday Feb 15th at the BEGINNING of lecture
Today

- Dictionaries
 - Hashing
- Sorting
 - Comparison sorting
Introduction to sorting

- Stacks, queues, priority queues, and dictionaries all focused on providing one element at a time
- But often we know we want “all the data items” in some order
 - Anyone can sort, but a computer can sort faster
 - Very common to need data sorted somehow
 - Alphabetical list of people
 - Population list of countries
 - Search engine results by relevance
 - …
- Different algorithms have different asymptotic and constant-factor trade-offs
 - No single ‘best’ sort for all scenarios
 - Knowing one way to sort just isn’t enough
More reasons to sort

General technique in computing: Preprocess (e.g. sort) data to make subsequent operations faster

Example: Sort the data so that you can
- Find the k^{th} largest in constant time for any k
- Perform binary search to find an element in logarithmic time

Whether the benefit of the preprocessing depends on
- How often the data will change
- How much data there is
The main problem, stated carefully

For now we will assume we have n comparable elements in an array and we want to rearrange them to be in increasing order.

Input:
- An array A of data records
- A key value in each data record
- A comparison function (consistent and total)
 - Given keys a & b, what is their relative ordering? $<, =, >$?
 - Ex: keys that implement Comparable or have a Comparator that can handle them

Effect:
- Reorganize the elements of A such that for any i and j, if $i < j$ then $A[i] \leq A[j]$
- Usually unspoken assumption: A must have all the same data it started with
- Could also sort in reverse order, of course

An algorithm doing this is a comparison sort
Variations on the basic problem

1. Maybe elements are in a linked list (could convert to array and back in linear time, but some algorithms needn’t do so)

2. Maybe in the case of ties we should preserve the original ordering
 – Sorts that do this naturally are called stable sorts
 – One way to sort twice, Ex: Sort movies by year, then for ties, alphabetically

3. Maybe we must not use more than $O(1)$ “auxiliary space”
 – Sorts meeting this requirement are called ‘in-place’ sorts
 – Not allowed to allocate extra array (at least not with size $O(n)$), but can allocate $O(1)$ # of variables
 – All work done by swapping around in the array

4. Maybe we can do more with elements than just compare
 – Comparison sorts assume we work using a binary ‘compare’ operator
 – In special cases we can sometimes get faster algorithms

5. Maybe we have too much data to fit in memory
 – Use an “external sorting” algorithm
Sorting: The Big Picture

Simple algorithms: \(O(n^2) \)
- Insertion sort
- Selection sort
- Shell sort
...

Fancier algorithms: \(O(n \log n) \)
- Heap sort
- Merge sort
- Quick sort (avg)
...

Comparison lower bound: \(\Omega(n \log n) \)

Specialized algorithms: \(O(n) \)
- Bucket sort
- Radix sort

Handling huge data sets
- External sorting
Insertion Sort

- Idea: At step k, put the k^{th} element in the correct position among the first k elements

- Alternate way of saying this:
 - Sort first two elements
 - Now insert 3rd element in order
 - Now insert 4th element in order
 - ...

- “Loop invariant”: when loop index is i, first i elements are sorted

- Time?
 - Best-case _____ Worst-case _____ “Average” case _____
Insertion Sort

- **Idea:** At step \(k \), put the \(k^{th} \) element in the correct position among the first \(k \) elements

- Alternate way of saying this:
 - Sort first two elements
 - Now insert 3\(^{rd}\) element in order
 - Now insert 4\(^{th}\) element in order
 - ...

- “Loop invariant”: when loop index is \(i \), first \(i \) elements are sorted

- **Time?**

 - Best-case \(O(n) \)
 - Worst-case \(O(n^2) \)
 - “Average” case \(O(n^2) \)

 - start sorted
 - start reverse sorted

 (see text)
Selection sort

• Idea: At step k, find the smallest element among the not-yet-sorted elements and put it at position k

• Alternate way of saying this:
 – Find smallest element, put it 1$^{\text{st}}$
 – Find next smallest element, put it 2$^{\text{nd}}$
 – Find next smallest element, put it 3$^{\text{rd}}$
 – …

• “Loop invariant”: when loop index is i, first i elements are the i smallest elements in sorted order

• Time?

 Best-case _____ Worst-case _____ “Average” case _____
Selection sort

- Idea: At step k, find the smallest element among the not-yet-sorted elements and put it at position k

- Alternate way of saying this:
 - Find smallest element, put it 1st
 - Find next smallest element, put it 2nd
 - Find next smallest element, put it 3rd
 - ...

- “Loop invariant”: when loop index is i, first i elements are the i smallest elements in sorted order

- Time?

 Best-case $O(n^2)$
 Worst-case $O(n^2)$
 “Average” case $O(n^2)$

 $Always$ $T(1) = 1$ and $T(n) = n + T(n-1)$

Insertion Sort vs. Selection Sort

- Different algorithms

- Solve the same problem

- Have the same worst-case and average-case asymptotic complexity
 - Insertion-sort has better best-case complexity; preferable when input is “mostly sorted”

- Other algorithms are more efficient *for non-small arrays that are not already almost sorted*
 - Insertion sort may do well on small arrays
Aside: We won’t cover Bubble Sort

- It doesn’t have good asymptotic complexity: $O(n^2)$
- It’s not particularly efficient with respect to common factors
- Basically, almost everything it is good at, some other algorithm is at least as good at
- Some people seem to teach it just because someone taught it to them

- For fun see: “Bubble Sort: An Archaeological Algorithmic Analysis”, Owen Astrachan, SIGCSE 2003
Sorting: The Big Picture

<table>
<thead>
<tr>
<th>Simple algorithms: $O(n^2)$</th>
<th>Fancier algorithms: $O(n \log n)$</th>
<th>Comparison lower bound: $\Omega(n \log n)$</th>
<th>Specialized algorithms: $O(n)$</th>
<th>Handling huge data sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion sort</td>
<td>Heap sort</td>
<td></td>
<td>Bucket sort</td>
<td>External sorting</td>
</tr>
<tr>
<td>Selection sort</td>
<td>Merge sort</td>
<td></td>
<td>Radix sort</td>
<td></td>
</tr>
<tr>
<td>Shell sort</td>
<td>Quick sort (avg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Specialized algorithms may also include external sorting.
Heap sort

- As you saw on project 2, sorting with a heap is easy:
 - insert each arr[i], better yet use buildHeap
 - for(i=0; i < arr.length; i++)
 arr[i] = deleteMin();

- Worst-case running time:

- We have the array-to-sort and the heap
 - So this is not an in-place sort
 - There’s a trick to make it in-place…
Heap sort

• As you saw on project 2, sorting with a heap is easy:
 – insert each arr[i], better yet use buildHeap
 – for(i=0; i < arr.length; i++)
 arr[i] = deleteMin();

• Worst-case running time: $O(n \log n)$ why?

• We have the array-to-sort and the heap
 – So this is not an in-place sort
 – There’s a trick to make it in-place…
In-place heap sort

- Treat the initial array as a heap (via `buildHeap`)
- When you delete the ith element, put it at \(\text{arr}[n-i] \)
 - It’s not part of the heap anymore!

```plaintext
4 7 5 9 8 6 10 3 2 1
```

\(\text{arr}[n-i] = \text{deleteMin}() \)

But this reverse sorts – how would you fix that?
“AVL sort”

- How?
“AVL sort”

- We can also use a balanced tree to:
 - `insert` each element: total time $O(n \log n)$
 - Repeatedly `deleteMin`: total time $O(n \log n)$

- But this cannot be made in-place and has worse constant factors than heap sort
 - both are $O(n \log n)$ in worst, best, and average case
 - neither parallelizes well
 - heap sort is better

- Don’t even think about trying to sort with a hash table…
Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Solve the parts independently
 - Think recursion
 - Or potential parallelism

3. Combine solution of parts to produce overall solution

Ex: Sort each half of the array, combine together; to sort each half, split into halves...
Divide-and-conquer sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort:
 Sort the left half of the elements (recursively)
 Sort the right half of the elements (recursively)
 Merge the two sorted halves into a sorted whole

2. Quicksort:
 Pick a “pivot” element
 Divide elements into those less-than pivot and those greater-than pivot
 Sort the two divisions (recursively on each)
 Answer is [sorted-less-than then pivot then sorted-greater-than]
Mergesort

To sort array from position lo to position hi:
- If range is 1 element long, it’s sorted! (Base case)
- Else, split into two halves:
 - Sort from lo to $(hi+lo)/2$
 - Sort from $(hi+lo)/2$ to hi
 - Merge the two halves together

Merging takes two sorted parts and sorts everything
- $O(n)$ but requires auxiliary space...
Example, focus on merging

Start with:

\[
\begin{array}{cccccccc}
8 & 2 & 9 & 4 & 5 & 3 & 1 & 6 \\
\end{array}
\]

After we return from left and right recursive calls (pretend it works for now)

\[
\begin{array}{cccccccc}
2 & 4 & 8 & 9 & 1 & 3 & 5 & 6 \\
\end{array}
\]

Merge:
Use 3 “fingers” and 1 more array

(After merge, copy back to original array)
Example, focus on merging

Start with:

\[
\begin{array}{cccccccc}
8 & 2 & 9 & 4 & 5 & 3 & 1 & 6 \\
\end{array}
\]

After recursion:
(not magic 😊)

\[
\begin{array}{cccccccc}
2 & 4 & 8 & 9 & 1 & 3 & 5 & 6 \\
\end{array}
\]

Merge:
Use 3 “fingers”
and 1 more array

(After merge, copy back to original array)
Example, focus on merging

Start with:

| 8 | 2 | 9 | 4 | 5 | 3 | 1 | 6 |

After recursion: (not magic 😊)

| 2 | 4 | 8 | 9 | 1 | 3 | 5 | 6 |

Merge:

Use 3 “fingers” and 1 more array

(After merge, copy back to original array)
Example, focus on merging

Start with:

8 2 9 4 5 3 1 6

After recursion:
(not magic 😊)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3

(After merge, copy back to original array)
Example, focus on merging

Start with:

\[
\begin{array}{cccccccc}
8 & 2 & 9 & 4 & 5 & 3 & 1 & 6 \\
\end{array}
\]

After recursion:
(not magic 😊)

\[
\begin{array}{cccccccc}
2 & 4 & 8 & 9 & 1 & 3 & 5 & 6 \\
\end{array}
\]

Merge:
Use 3 “fingers”
and 1 more array

(After merge, copy back to original array)
Example, focus on merging

Start with:

After recursion:
(not magic 😊)

Merge:
Use 3 “fingers”
and 1 more array

(After merge, copy back to original array)
Example, focus on merging

Start with:

```
8 2 9 4 5 3 1 6
```

After recursion:
(not magic 😊)

```
2 4 8 9 1 3 5 6
```

Merge:
Use 3 “fingers”
and 1 more array

(After merge, copy back to original array)
Example, focus on merging

Start with:

8 2 9 4 5 3 1 6

After recursion:

2 4 8 9 1 3 5 6
(not magic 😊)

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5 6 8

(After merge, copy back to original array)
Example, focus on merging

Start with:

After recursion:
(not magic 😊)

Merge:
Use 3 “fingers”
and 1 more array

(After merge, copy back to original array)
Example, focus on merging

Start with:

Start with:

After recursion:

After recursion:

(Not magic 😊)

Merge:

Merge:

Use 3 “fingers”

Use 3 “fingers”

and 1 more array

and 1 more array

(After merge, copy back to original array)

(After merge, copy back to original array)
Mergesort example: Recursively splitting list in half

8 2 9 4 5 3 1 6

Divide

8 2 9 4

Divide

8 2

9 4

Divide

8 2

9 4

1 element

8 2

9 4

5 3 1 6

5 3

1 6

2/04/2013
Mergesort example: Merge as we return from recursive calls

When a recursive call ends, it’s sub-arrays are each in order; just need to merge them in order together
Mergesort example: Merge as we return from recursive calls

We need another array in which to do each merging step; merge results into there, then copy back to original array.
Mergesort, some details: saving a little time

- What if the final steps of our merging looked like the following:

```
  2 4 5 6 1 3 8 9
```

Main array

```
  1 2 3 4 5 6
```

Auxiliary array

- Seems kind of wasteful to copy 8 & 9 to the auxiliary array just to copy them immediately back…
Mergesort, some details: saving a little time

- Unnecessary to copy ‘dregs’ over to auxiliary array
 - If left-side finishes first, just stop the merge & copy the auxiliary array:

 ![Diagram 1]

 - If right-side finishes first, copy dregs directly into right side, then copy auxiliary array

 ![Diagram 2]
Some details: saving space / copying

Simplest / worst approach:
 Use a new auxiliary array of size \((\text{hi-lo})\) for every merge
 Returning from a recursive call? Allocate a new array!

Better:
 Reuse same auxiliary array of size \(n\) for every merging stage
 Allocate auxiliary array at beginning, use throughout

Best (but a little tricky):
 Don’t copy back – at 2\(^{\text{nd}}\), 4\(^{\text{th}}\), 6\(^{\text{th}}\), … merging stages, use the
 original array as the auxiliary array and vice-versa
 – Need one copy at end if number of stages is odd
Allocate one auxiliary array, switch each step

First recurse down to lists of size 1
As we return from the recursion, switch off arrays

Arguably easier to code up without recursion at all

2/04/2013
Linked lists and big data

We defined the sorting problem as over an array, but sometimes you want to sort linked lists.

One approach:
- Convert to array: $O(n)$
- Sort: $O(n \log n)$
- Convert back to list: $O(n)$

Or: mergesort works very nicely on linked lists directly
- heapsort and quicksort do not
- insertion sort and selection sort do but they’re slower

Mergesort is also the sort of choice for external sorting
- Linear merges minimize disk accesses
Mergesort Analysis

Having defined an algorithm and argued it is correct, we should analyze its running time (and space):

To sort \(n \) elements, we:
- Return immediately if \(n=1 \)
- Else do 2 subproblems of size \(n/2 \) and then an \(O(n) \) merge

Recurrence relation?
Mergesort Analysis

Having defined an algorithm and argued it is correct, we should analyze its running time (and space):

To sort \(n \) elements, we:
- Return immediately if \(n=1 \)
- Else do 2 subproblems of size \(n/2 \) and then an \(O(n) \) merge

Recurrence relation:

\[
\begin{align*}
T(1) &= c_1 \\
T(n) &= 2T(n/2) + c_2 n
\end{align*}
\]
MergeSort Recurrence

(For simplicity let constants be 1 – no effect on asymptotic answer)

\[T(1) = 1 \]
\[T(n) = 2T(n/2) + n \]
\[= 2(2T(n/4) + n/2) + n \]
\[= 4T(n/4) + 2n \]
\[= 4(2T(n/8) + n/4) + 2n \]
\[= 8T(n/8) + 3n \]
\[\ldots \text{(after k expansions)} \]
\[= 2^kT(n/2^k) + kn \]

So total is \(2^kT(n/2^k) + kn \) where \(n/2^k = 1 \), i.e., \(\log n = k \)

That is, \(2^{\log n} T(1) + n \log n \)

\[= n + n \log n \]
\[= O(n \log n) \]
Or more intuitively…

This recurrence comes up often enough you should just “know” it’s $O(n \log n)$

Merge sort is relatively easy to intuit (best, worst, and average):
- The recursion “tree” will have $\log n$ height
- At each level we do a total amount of merging equal to n
Quicksort

- Also uses divide-and-conquer
 - Recursively chop into halves
 - But, instead of doing all the work as we merge together, we’ll do all the work as we recursively split into halves
 - Also unlike MergeSort, does not need auxiliary space

- $O(n \log n)$ on average 😊, but $O(n^2)$ worst-case 😞
 - MergeSort is always $O(n \log n)$
 - So why use QuickSort?

- Can be faster than mergesort
 - Often believed to be faster
 - Quicksort does fewer copies and more comparisons, so it depends on the relative cost of these two operations!
Quicksort overview

1. Pick a pivot element
 - Hopefully an element ~median
 - Good QuickSort performance depends on good choice of pivot; we’ll see why later, and talk about good pivot selection later

2. Partition all the data into:
 A. The elements less than the pivot
 B. The pivot
 C. The elements greater than the pivot

3. Recursively sort A and C

4. The answer is, “as simple as A, B, C”

(Alas, there are some details lurking in this algorithm)
Quicksort: Think in terms of sets

1. Select pivot value:
 - S
 - Pivot: 65

2. Partition S:
 - S1: 0, 13, 26, 31, 43, 57
 - S2: 92, 75, 81

3. Recursively apply Quicksort to S1 and S2:
 - QuickSort(S1) and QuickSort(S2)

4. Presto! S is sorted:
 - Final sorted list: 0, 13, 26, 31, 43, 57, 65, 75, 81, 92
Quicksort Example, showing recursion

Divide

1 element

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 2

3

4

5

6

8

9

2 4 3 1

5

8 9 6

1 2

3

4

5

6

8

9

1 2 3 4

5 6 8 9
Quicksort Details

We have not yet explained:

• How to pick the pivot element
 – Any choice is correct: data will end up sorted
 – But as analysis will show, want the two partitions to be about equal in size

• How to implement partitioning
 – In linear time
 – In place
Pivots

- **Best pivot?**
 - Median
 - Halve each time

- **Worst pivot?**
 - Greatest/least element
 - Reduce to problem of size 1 smaller
 - $O(n^2)$
Quicksort: Potential pivot rules

While sorting \texttt{arr} from \texttt{lo} (inclusive) to \texttt{hi} (exclusive)...

- Pick \texttt{arr[lo]} or \texttt{arr[hi-1]}
 - Fast, but worst-case is (mostly) sorted input

- Pick random element in the range
 - Does as well as any technique, but (pseudo)random number generation can be slow
 - (Still probably the most elegant approach)

- Median of 3, e.g., \texttt{arr[lo]}, \texttt{arr[hi-1]}, \texttt{arr[(hi+lo)/2]}
 - Common heuristic that tends to work well
Partitioning

• That is, given 8, 4, 2, 9, 3, 5, 7 and pivot 5
 – Dividing into left half & right half (based on pivot)

• Conceptually simple, but hardest part to code up correctly
 – After picking pivot, need to partition
 • Ideally in linear time
 • Ideally in place

• Ideas?
Partitioning

- One approach (there are slightly fancier ones):
 1. Swap pivot with \texttt{arr[lo]}; move it ‘out of the way’
 2. Use two fingers \texttt{i} and \texttt{j}, starting at \texttt{lo+1} and \texttt{hi-1} (start & end of range, apart from pivot)
 3. Move from right until we hit something less than the pivot; belongs on left side
 Move from left until we hit something greater than the pivot; belongs on right side
 Swap these two; keep moving inward
 \texttt{while (i < j)}
 \begin{itemize}
 \item if (\texttt{arr[j] > pivot}) \texttt{j}--
 \item else if (\texttt{arr[i] < pivot}) \texttt{i}++
 \item else swap \texttt{arr[i] with arr[j]}
 \end{itemize}
 4. Put pivot back in middle (Swap with \texttt{arr[i]})
Quicksort Example

- Step one: pick pivot as median of 3
 - $lo = 0$, $hi = 10$

![Array with pivot moved to the lo position]

- Step two: move pivot to the lo position

![Array with pivot moved to the lo position]
Quicksort Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

Often have more than one swap during partition – this is a short example
Quicksort Analysis

• Best-case?

• Worst-case?

• Average-case?
Quicksort Analysis

• Best-case: Pivot is always the median
 \[T(0) = T(1) = 1 \]
 \[T(n) = 2T(n/2) + n \] -- linear-time partition
 Same recurrence as mergesort: \(O(n \log n) \)

• Worst-case: Pivot is always smallest or largest element
 \[T(0) = T(1) = 1 \]
 \[T(n) = 1T(n-1) + n \]
 Basically same recurrence as selection sort: \(O(n^2) \)

• Average-case (e.g., with random pivot)
 – \(O(n \log n) \), not responsible for proof (in text)
Quicksort Cutoffs

- For small n, all that recursion tends to cost more than doing a quadratic sort
 - Remember asymptotic complexity is for large n
 - Also, recursive calls add a lot of overhead for small n
- Common engineering technique: switch to a different algorithm for subproblems below a cutoff
 - Reasonable rule of thumb: use insertion sort for $n < 10$
- Notes:
 - Could also use a cutoff for merge sort
 - Cutoffs are also the norm with parallel algorithms
 - switch to sequential algorithm
 - None of this affects asymptotic complexity
Quicksort Cutoff skeleton

```c
void quicksort(int[] arr, int lo, int hi) {
    if (hi - lo < CUTOFF)
        insertionSort(arr, lo, hi);
    else
        ... 
}
```

Notice how this cuts out the vast majority of the recursive calls
- Think of the recursive calls to quicksort as a tree
- Trims out the bottom layers of the tree