CSE 332: Data Abstractions

Lecture 6: Dictionaries; Binary Search Trees

Ruth Anderson
Winter 2013

Announcements

* Project 1 — phase B due Tues Jan 22" 11pm via catalyst
« Homework 1 — due NOW!!
« Homework 2 — due Friday Jan 25" at beginning of class

* No class on Monday Jan 21t

1/18/2013

Today

 Dictionaries
e Trees

1/18/2013

Where we are

Studying the absolutely essential ADTs of computer science and
classic data structures for implementing them

ADTs so far:
1. Stack: push, pop, isEmpty, ...
2. Queue: enqueue, dequeue, isEmpty, ...

3. Priority queue: insert, deleteMin, ...

Next:
4. Dictionary (a.k.a. Map): associate keys with values
— probably the most common, way more than priority queue

1/18/2013

The Dictionary (a.k.a. Map) ADT

c* rea
Data: + Ruth
 set of (key, value) pairs + Anderson

« keys must be comparable

Insert (rea, Ruth Anderson) : _
». + dcjones

Operations:)
. Daniel

* insert(key,val): s Jones

- places (key,val) in map find (kainby87):

(If key already used, overwrites) >

existing entry) Hyeln, Kim,... Kainby87
« find(key) : : Hyeln

- returns val associated with key - Kim

e delete (key)

- . We will tend to emphasize the keys, but
1/18/2013 don’t forget about the stored values! .

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values
— A key Is present or not (no repeats)

For £ind, insert, delete, there is little difference
— In dictionary, values are “just along for the ride”
— S0 same data-structure ideas work for dictionaries and sets
« Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations
— union, intersection, is subset, elC.
— Notice these are binary operators on sets

— We will want different data structures to implement these
operators

1/18/2013 6

A Modest Few Uses for Dictionaries

Any time you want to store information according to some key and
be able to retrieve it efficiently — a dictionary is the ADT to use!

— Lots of programs do that!

* Networks: router tables

« Operating systems: page tables

« Compilers: symbol tables

« Databases: dictionaries with other nice properties
« Search: iInverted indexes, phone directories, ...

* Biology: genome maps

1/18/2013

Simple implementations

For dictionary with n key/value pairs

insert find delete

* Unsorted linked-list
« Unsorted array

« Sorted linked list

« Sorted array

We’'ll see a Binary Search Tree (BST) probably does better, but
not in the worst case unless we keep it balanced

1/18/2013

Simple implementations

For dictionary with n key/value pairs

insert find delete
* Unsorted linked-list O(1) * O(n) O(n)
« Unsorted array O(1)* O(n) O(n)
« Sorted linked list O(n) O(n) O(n)
« Sorted array O(n) O(logn) O(n)

We’'ll see a Binary Search Tree (BST) probably does better, but
not in the worst case unless we keep it balanced

*Note: If we do not allow duplicates values to be inserted, we would need to do
O(n) work to check for a key’s existence before insertion

1/18/2013

Lazy Deletion (e.qg. Iin a sorted array)
10 | 12 | 24 | 30 | 41 | 42 | 44 | 45 | 50
v x v v v v x v v

A general technique for making delete as fast as £ind.
— Instead of actually removing the item just mark it deleted

Plusses:
— Simpler
— Can do removals later in batches
— If re-added soon thereafter, just unmark the deletion

Minuses:
— Extra space for the “is-it-deleted” flag
— Data structure full of deleted nodes wastes space
— £ind O(log m) time where m is data-structure size (m >=n)
— May complicate other operations

1/18/2013 10

Better Dictionary data structures

Will spend the next several lectures looking at dictionaries with
three different data structures

1. AVL trees

— Binary search trees with guaranteed balancing
2. B-Trees

— Also always balanced, but different and shallower

— B!=Binary; B-Trees generally have large branching factor
3. Hashtables

— Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

1/18/2013

Why Trees?

Trees offer speed ups because of their branching factors
* Binary Search Trees are structured forms of binary search

1/18/2013

12

Binary Search

1/18/2013

find(4)
_ D
N\
_ D
1 1314|557 10

13

Binary Search Tree

Our goal is the performance of binary search in
a tree representation

< _>

(& - Z)
-

1,34 5|7 |8]9 |10

1/18/2013

Why Trees?

Trees offer speed ups because of their branching factors
* Binary Search Trees are structured forms of binary search

Even a basic BST is fairly good

Insert Find Delete
Worse-Case O(n) O(n) O(n)
Average-Case O(log n) O(log n) O(log n)

1/18/2013 15

Binary Trees

* Binary tree is empty or
— aroot (with data)
— a left subtree (maybe empty)
— aright subtree (maybe empty)

* Representation:

Data

left | right
pointer | pointer

« For a dictionary, data will include a
key and a value

1/18/2013

Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count # of edges)

For binary tree of height h:
— max # of leaves:

— max # of nodes:
— min # of leaves:

— min # of nodes:

1/18/2013 17

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
— max # of leaves: 2h

— max # of nodes: 2(h+1) _1
— min # of leaves: 1

— min # of nodes: h+1

For n nodes, we cannot do better than O(1og n) height,
and we want to avoid O(n) height

1/18/2013 18

Calculating height

What is the height of a tree with root root?

int treeHeight (Node root) {

2?22

1/18/2013

19

Calculating height

What is the height of a tree with root r?

int treeHeight (Node root) {
i1f (root == null)
return -1;
return 1 + max(treeHeight (root.left),
treeHeight (root.right)) ;

Running time for tree with n nodes: O(n) — single pass over tree

Note: non-recursive is painful — need your own stack of pending
nodes; much easier to use recursion’s call stack

1/18/2013 20

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

 Pre-order: root, left subtree, right subtree o
 In-order: left subtree, root, right subtree ° 6
« Post-order: left subtree, right subtree, root @ @

(an expression tree)

1/18/2013 21

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

 Pre-order: root, left subtree, right subtree o
+*245

 In-order: left subtree, root, right subtree ° 6
2*4+5

« Post-order: left subtree, right subtree, root @ @
24*5+

(an expression tree)

1/18/2013 22

More on traversals

void inOrdertraversal (Node t) {
if(t '= null) {
traverse (t.left) ;
process (t.element) ;
traverse (t.right) ;

}
}

Sometimes order doesn’t matter
« Example: sum all elements
Sometimes order matters
« Example: print tree with parent above
iIndented children (pre-order)

« Example: evaluate an expression tree
(post-order)

1/18/2013

23

Binary Search Tree

« Structural property (“binary”)
— each node has < 2 children
— result: keeps operations simple @

« QOrder property (5) (17

— all keys in left subtree smaller
than node’s key

— all keys in right subtree larger 9 6 @ @

than node’s key

— result: easy to find any given key (4) (7) (9) (14
13

1/18/2013 24

Are these BSTs?

1/18/2013 25

Are these BSTs?

1/18/2013 26

Find in BST, Recursive

@ Data find (Key key, Node root) {
if (root == null)

return null;
e @ if (key < root.key)
return find(key,root.left)
if (key > root.key)

9 @ @ return find(key,root.right) ;

return root.data;
(D W O QQ

}

1/18/2013 27

Find in BST, lterative

@ Data find (Key key, Node root) {
while (root '= null
&& root.key !'= key) {
e @ if (key < root.key)

root = root.left;
else (key > root.key)

9 @ @ root = root.right;
}

if (root == null)

e @ @ @ return null;

return root.data;

1/18/2013 28

Other “finding operations”

Find minimum node

Find maximum node

Find predecessor of a non-leaf
Find successor of a non-leaf

Find predecessor of a leaf
Find successor of a leaf

1/18/2013

29

Insert in BST

insert (13)
insert (8)
insert (31)

(New) insertions happen
only at leaves — easy!

1. Find
2. Create a new node

1/18/2013 30

Deletion in BST

Why might deletion be harder than insertion?

1/18/2013

31

Deletion

 Removing an item disrupts the tree structure

« Basicidea:
— find the node to be removed,
— Remove it
— “fix” the tree so that it is still a binary search tree

 Three cases:
— node has no children (leaf)
— node has one child
— node has two children

1/18/2013

32

Deletion — The Leaf Case

delete (17)

1/18/2013

33

Deletion — The One Child Case

delete (15)

1/18/2013

34

Deletion — The Two Child Case

delete (5)

What can we replace 5 with?

1/18/2013

35

Deletion — The Two Child Case

ldea: Replace the deleted node with a value guaranteed to be
between the two child subtrees

Options:
 successor fromright subtree: £indMin (node.right)
* predecessor from left subtree: findMax (node.left)

— These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor
« Leaf or one child case — easy cases of delete!

1/18/2013 36

Delete Using Successor

findMin(right sub tree) = 7
delete (5)

1/18/2013 37

Delete Using Predecessor

findMax(left sub tree) = 2

delete (5)

1/18/2013 38

BuildTree for BST

We had buildHeap, so let’s consider buildTree
Insert keys 1, 2, 3,4, 5,6, 7, 8, 9 into an empty BST

— If inserted in given order,
what is the tree?

— What big-O runtime for
this kind of sorted input?

— Is inserting in the reverse order
any better?

1/18/2013

39

BuildTree for BST

We had buildHeap, so let’s consider buildTree
Insert keys 1, 2, 3,4, 5,6, 7, 8, 9 into an empty BST

— If inserted in given order,
what is the tree?

— What big-O runtime for O(n2)

this kind of sorted input? ot g happy place

— Is inserting in the reverse order
any better?

1/18/2013

40

BuildTree for BST
 Insertkeysl, 2, 3,4,5,6, 7, 8, 9Iintoan empty BST

 What we if could somehow re-arrange them
— maedian first, then left median, right median, etc.
- 53,7,2,1,4,8,6,9

— What tree does that give us?

— What big-O runtime?

1/18/2013 41

BuildTree for BST
 Insertkeysl, 2, 3,4,5,6, 7, 8, 9Iintoan empty BST

 What we if could somehow re-arrange them
— maedian first, then left median, right median, etc.
- 53,7,2,1,4,8,6,9

— What tree does that give us?

— What big-O runtime?

O(n log n), definitely better

1/18/2013 42

Give up on BuildTree for BST

The median trick will guarantee a O(n log n)
build time, but it is not worth the effort.

Why?

« Subsequent inserts and deletes will
eventually transform the carefully
balanced tree into the dreaded list

« Then everything will have the O(n)
performance of a linked list

1/18/2013 43

Balanced BST

Observation

. BST: the shallower the better!

« For a BST with n nodes inserted in arbitrary order
— Average height is O(1og n) — see text for proof
— Worst case height is O(n)

« Simple cases such as inserting in key order lead to
the worst-case scenario

Solution: Require a Balance Condition that

1. ensures depthis always O(logn) - strong enough!
2. IS easy to maintain — not too strong!

1/18/2013 44

1.

2.

Potential Balance Conditions

Left and right subtrees of the root
have equal number of nodes

Left and right subtrees of the root
have equal height

1/18/2013

45

Potential Balance Conditions

1. Left and right subtrees of the root
have equal number of nodes

Too weak!
Height mismatch example: é

2. Left and right subtrees of the root
have equal height

Too weak! %
Double chain example:

1/18/2013 46

3.

4.

Potential Balance Conditions

Left and right subtrees of every node
have equal number of nodes

Left and right subtrees of every node
have equal height

1/18/2013

47

Potential Balance Conditions

Left and right subtrees of every node
have equal number of nodes

Too strong!
Only perfect trees (2" — 1 nodes) é

Left and right subtrees of every node
have equal height

Too strong!
Only perfect trees (2" — 1 nodes)

1/18/2013

48

The AVL Balance Condition

Left and right subtrees of every node
have heights differing by at most 1

Definition: balance(node) = height(node.left) — height(node.right)
AVL property: for every node x, —1<balance(x)<1

* Ensures small depth

— Will prove this by showing that an AVL tree of height
h must have a number of nodes exponential in h

« Easy (well, efficient) to maintain
— Using single and double rotations

1/18/2013

49

