
CSE 332: Data Abstractions

Lecture 5: Binary Heaps, Continued

Ruth Anderson
Winter 2013

Announcements

• Project 1 – phase A due Wed Jan 16th, 11pm via catalyst
– Be sure to look at clarifications page!

• Homework 1 – due Friday Jan 18th at beginning of class
– Clarifications posted

• Homework 2 – due Friday Jan 25st – coming soon!

• No class on Monday Jan 21th

1/16/2013 2

Today

• Priority Queues
• Binary Min Heap implementation

1/16/2013 3

Review

• Priority Queue ADT: insert comparable object, deleteMin

• Binary heap data structure: Complete binary tree where each
node has priority value greater than its parent

• O(height-of-tree)=O(log n) insert and deleteMin operations
– insert : put at new last position in tree and percolate-up
– deleteMin : remove root, put last element at root and

percolate-down
• But: tracking the “last position” is painful and we can do better

1/16/2013

insert deleteMin

6 2
15 23

12 18
45 3 7 996040

8020

10

700 50

85

4

1/16/2013

Array Representation of Binary Trees

GED

CB

A

J KH I

F

L

From node i :

left child: i*2
right child: i*2+1
parent: i/2

(wasting index 0 is
convenient for the
index arithmetic)

7

1

2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

5

http://xkcd.com/163

1/16/2013 6

Pseudocode: insert
void insert (int val) {

if (size==arr.length-1)
resize();

size++;
i =percolateUp(size,val);
arr[i] = val;

}

int percolateUp (int hole ,
int val) {

while (hole > 1 &&
val < arr[hole/2])

arr[hole] = arr[hole/2];
hole = hole / 2;

}
return hole;

}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

1/16/2013 7

Pseudocode: deleteMin
int deleteMin () {

if (isEmpty()) throw …
ans = arr[1];
hole = percolateDown

(1,arr[size]);
arr[hole] = arr[size];
size--;
return ans;

}

int percolateDown(int hole ,
int val) {

while (2*hole <= size) {
left = 2*hole;
right = left + 1;
if (arr[left] < arr[right]

|| right > size)
target = left;

else
target = right;

if (arr[target] < val) {
arr[hole] = arr[target];
hole = target;

} else
break;

}
return hole;

}

996040

8020

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

1/16/2013 8

Example

1. insert: 16, 32, 4, 69, 105, 43, 2
2. deleteMin

1/16/2013

0 1 2 3 4 5 6 7

9

Example: After insertion

1. insert: 16, 32, 4, 69, 105, 43, 2
2. deleteMin

2 32 4 69 105 43 16

0 1 2 3 4 5 6 7

1610569

432

2

43

1/16/2013 10

Example: After deletion

1. insert: 16, 32, 4, 69, 105, 43, 2
2. deleteMin

4 32 16 69 105 43

0 1 2 3 4 5 6 7

10569

1632

4

43

1/16/2013 11

Other operations

• decreaseKey : given pointer to object in priority queue (e.g., its
array index), lower its priority value by p
– Change priority and percolate up

• increaseKey : given pointer to object in priority queue (e.g., its
array index), raise its priority value by p
– Change priority and percolate down

• remove : given pointer to object in priority queue (e.g., its array
index), remove it from the queue

– decreaseKey with p = ∞∞∞∞, then deleteMin

Running time for all these operations?

1/16/2013 12

Evaluating the Array Implementation…
Advantages:

Minimal amount of wasted space:
– Only index 0 and any unused space on right in the array
– No "holes" due to complete tree property
– No wasted space representing tree edges
Fast lookups:
– Benefit of array lookup speed
– Multiplying and dividing by 2 is extremely fast (can be done

through bit shifting (see CSE 351)
– Last used position is easily found by using the PQueue's size

for the index

Disdvantages:
– What if the array gets too full (or wastes space by being too

empty)? Array will have to be resized.

Advantages outweigh Disadvantages: This is how it is done!

1/16/2013 13

So why O(1) average-case insert?

• Yes, insert's worst case is O(log n)
• The trick is that it all depends on the order the

items are inserted (What is the worst case order?)
• Experimental studies of randomly ordered inputs

shows the following:
– Average 2.607 comparisons per insert

(# of percolation passes)
– An element usually moves up 1.607 levels

• deleteMin is average O(log n)
– Moving a leaf to the root usually requires re-percolating

that value back to the bottom

1/16/2013 14

Aside: Insert run-time: Take 2

• Insert: Place in next spot, percUp
• How high do we expect it to go?
• Aside: Complete Binary Tree

– Each full row has 2x nodes of parent row
– 1+2+4+8+…+2k= 2k+1-1
– Bottom level has ~1/2 of all nodes
– Second to bottom has ~1/4 of all nodes

• PercUp Intuition:
– Move up if value is less than parent
– Inserting a random value, likely to have value not near highest, nor

lowest; somewhere in middle
– Given a random distribution of values in the heap, bottom row should

have the upper half of values, 2nd from bottom row, next 1/4
– Expect to only raise a level or 2, even if h is large

• Worst case: still O(logn)
• Expected case: O(1)
• Of course, there’s no guarantee; it may percUp to the root

996040

8020

10

700 50

85

1/16/2013 15

Building a Heap

Suppose you have n items you want to put in a new priority queue
• A sequence of n insert operations works

• Runtime?

Can we do better?
• If we only have access to insert and deleteMin operations,

then NO.
• There is a faster way - O(n), but that requires the ADT to have a

specialized buildHeap operation

Important issue in ADT design: how many specialized operations?
–Tradeoff: Convenience, Efficiency, Simplicity

1/16/2013 16

Floyd’s buildHeap Method

Recall our general strategy for working with the heap:
– Preserve structure property
– Break and restore heap property

Floyd’s buildHeap:

1. Create a complete tree by putting the n items in array indices
1, . . . n

2. Treat the array as a heap and fix the heap-order property
– Exactly how we do this is where we gain efficiency

1/16/2013 17

Floyd’s buildHeap Method

Bottom-up:
• Leaves are already in heap order
• Work up toward the root one level at a time

1/16/2013

void buildHeap () {
for (i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

18

buildHeap Example
• Say we start with this array:

[12,5,11,3,10,2,9,4,8,1,7,6]

• In tree form for readability
– Red for node not less than

descendants
• heap-order problem

– Notice no leaves are red
– Check/fix each non-leaf

bottom-up (6 steps here)

1/16/2013

6718

92103

115

12

4

19

buildHeap Example

1/16/2013

6718

92103

115

12

4 6718

92103

115

12

4

Step 1

• Happens to already be less than child

20

buildHeap Example

1/16/2013

6718

92103

115

12

4

Step 2

• Percolate down (notice that moves 1 up)

67108

9213

115

12

4

21

buildHeap Example

1/16/2013

Step 3

• Another nothing-to-do step

67108

9213

115

12

4 67108

9213

115

12

4

22

buildHeap Example

1/16/2013

Step 4

• Percolate down as necessary (steps 4a and 4b)

117108

9613

25

12

467108

9213

115

12

4

23

buildHeap Example

1/16/2013

Step 5

117108

9653

21

12

4117108

9613

25

12

4

24

buildHeap Example

1/16/2013

Step 6

117108

9654

23

1

12117108

9653

21

12

4

25

But is it right?

• “Seems to work”
– Let’s prove it restores the heap property (correctness)
– Then let’s prove its running time (efficiency)

1/16/2013

void buildHeap () {
for (i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

26

Correctness

Loop Invariant: For all j >i , arr[j] is less than its children
• True initially: If j > size/2 , then j is a leaf

– Otherwise its left child would be at position > size

• True after one more iteration: loop body and percolateDown
make arr[i] less than children without breaking the property
for any descendants

So after the loop finishes, all nodes are less than their children

1/16/2013

void buildHeap () {
for (i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

27

Efficiency

Easy argument: buildHeap is O(n log n) where n is size

• size/2 loop iterations
• Each iteration does one percolateDown , each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of
the algorithm…

1/16/2013

void buildHeap () {
for (i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

28

Efficiency

Better argument: buildHeap is O(n) where n is size

• size/2 total loop iterations: O(n)

• 1/2 the loop iterations percolate at most 1 step
• 1/4 the loop iterations percolate at most 2 steps
• 1/8 the loop iterations percolate at most 3 steps… etc.
• ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) = 2 (page 4 of Weiss)

– So at most 2(size/2) total percolate steps: O(n)

– Also see Weiss 6.3.4, sum of heights of nodes in a perfect tree

1/16/2013

void buildHeap () {
for (i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

29

Lessons from buildHeap

• Without buildHeap , our ADT already let clients implement their
own in θ(n log n) worst case

– Worst case is inserting lower priority values later

• By providing a specialized operation internally (with access to the
data structure), we can do O(n) worst case
– Intuition: Most data is near a leaf, so better to percolate down

• Can analyze this algorithm for:
– Correctness: Non-trivial inductive proof using loop invariant
– Efficiency:

• First analysis easily proved it was O(n log n)

• A “tighter” analysis shows same algorithm is O(n)

1/16/2013 30

What we’re skipping (see text if curious)

• d-heaps: have d children instead of 2 (Weiss 6.5)
– Makes heaps shallower, useful for heaps too big for memory
– How does this affect the asymptotic run-time (for small d’s)?

• Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)
– Different data structures for priority queues that support a

logarithmic time merge operation (impossible with binary
heaps)

– merge: given two priority queues, make one priority queue

– Insert & deleteMin defined in terms of merge

Aside: How might you merge binary heaps:
• If one heap is much smaller than the other?
• If both are about the same size?

1/16/2013 31 1/16/2013 32

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

void buildHeap () {
for (i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

}
}

996040

8020

10

700 50

85

